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SUMMARY

This report describes the results of a research effort to in-
vestigate a method of obtaining high resolution images of space ob-
jects using earth-bound optical telescopes despite the turbulence of
the atmosphere. The results of this research are an indication that,
using an iterative reconstruction algorithm, it is feasible to re-
construct diffraction-limited images from the Fourier modulus (or
autocorrelation) data provided by stellar speckle interferometry.

Experiments were performed on astronomical data. It was neces-
sary to develop methods of compensating for systematic errors and
noise in the data. These methods were applied to binary star data,
and a diffraction-limited image was successfully reconstructed from
the resulting Fourier modulus data.

The uniqueness of images reconstructed from Fourier modulus data
was explored using the theory of analytic functions. It was shown,
among other things, that if an object or its autocorrelation consists
of separated parts satisfying certain disconnection conditions, then
it is usually uniquely specified by its Fourier modulus.

A new method was developea for reconstructing the support of an
object from the support of its autocorrelation; it involves taking
the intersection of three translates of the autocorrelation support.
For objects consisting of a number of separated points, a new method
was developed for reconstructing the object.
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This report was prepared by the Radar and Optics Division of the
tnvironmental Research Institute of Michigan. The work was sponsored
by the Air Force Office of Scientific Research/AFSC, United States
Air Force, under Contract No. F49620-80-C-0006.

This interim scientific report covers work performed between |
Jctober 1979 and 30 September 1980. The contract monitor is Dr.
Henry Radoski, Uirectorate of Physical and Geophysical Sciences,
AFUSR/NP, Building 410, Bolling Air Force Base, D.C. 20332. The
principal investigator 1is James R. Fienup. Major contributors to
the «ffort are Thomas R. Crimmins and James R. Fienup. Additional
contributors to the effort are Gerald B. Feldkamp, Lawrence S. Joyce,
Eiiett N, Leith, and Christopher J. Roussi.
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HIGH RESOLUTION IMAGING OF SPACE OBJECTS

1
INTRODUCTIUN AND OBJECTIVES
This report describes the results of the first year of a two-year
research effort to investigate a method of owtaining high resolution
images of space objects using earth-bound optical telescopes.

A serious problem in astronomy is that the turbulence of the
earth's atmosphere severely limits the resolution of large earth-
bound optical telescopes. Under good "seeing" conditions the reso-
lution allowed by the atmosphere is typically one second of arc, com-
pared with 0.02 seconds of arc, the theoretical diffraction-limited
resolution of a five-meter diameter telescope. ThalL is, the poten-
tial exists for obtaining images having fifty times finer resolution
than what is ordinarily obtainable.

Several interferometric methods are capable of providing high-
resolution {diffraction-limited) information through atmospheric tur-
bulence. The most promising of these interferometric methods is
Labeyrie's stellar speckle interferometry. The high-resolution in-
formation provided by these methods is the modulus of the Fourier
transform of the object; the phase of the Fourier transform is lost.
Unfortunately, except for the very special case in which an un-
resolved star is very near the object of interest, the Fourier modu-
lus can be used to directly compute only the autocorrelation of the
object, but not the object itself. The autocorrelation is ordinarily
useful only for determining the diameter of the object or the sepa-
ration of a binary star pair.

In recent years it has been shown that this stumbling block can
be overcome by an iterative algorithm for computing the object's
spatial (or angular) brightness distribution from its Fourier modu-
lus. The algorithm relies both on the Fourier modulus data measured
by stellar speckle interferometry and on the a priori constraint that




—~

the object distribution is a nonnegative function. Therefore, the
combination of stellar speckle interferometry with the iterative
atgorithm can provide diffraction-limited images despite the presence
of atmospheric turbulence.

The goals of this two-year research effort are threefold: (1) to
wprove the iterative reconstruction algorithm to make it operate
reliably in near real-time on imperfect real-world data, (2) to de-
termine the uniqueness of the solution under various conditions, and
(3) to demonstrate the vreconstruction technique with real-world
interterometer data, thereby providing images with finer resolution
than would ordinarily be possible.

As envisioned in the statement of work for this contract, these

goals would be met as follows:

A. Perform initial studies and set priorities for the following

five study areas:

V. analytical study of the input-output concept using a
statistical approach.

2. analytical and computer studies of the uniqueness
problem,

3. variations of the basit algorithm to improve reliability.

4. analysis and computer simulations of the effects of noise
and other imperfections in the data, and methods for
minimizing their effects for the types of noise present
in conventional interferometers.

5. combining the iterative approach with other imaging

techniques such as the Knox-~Thompson method.

B. Perform detailed studies of those areas listed abgve that

are found to be most important.

10




Obtain interferometer data, evaluate it, and process it into
imagery.

Study the applicability of the iterative technique to other
problems,

n




KESEARCH ACé%MPLISHMENTS

The first year's research effort can be divided into three major
topics. (1) Stellar speckle interferometer data was acquired, eval-
uated, and processed into imagery. Methods were developed for mini-
mizing the effects of the types of noise and imperfections found in
that uata]. (2) Analytical (and to a lesser extent computer)
stugies of the uniqueness problem were performed2’3. (3) A new
method, not envisioned et the beginning of this program, was devel-
oped for reconstructing the support of an object; and for objects
consisting of a number of point-like sources, a new noniterative
method was developed for reconstructing the objecta. Publications

arising from this research effort are listed as References 1-4 below.

The results obtained for each of the three topics listed above
are summarized in the three respective sections that follow. Refer-
ence 1 to 4 are included as Appendices A, B, C, and D, respectively.
Chapter 3 of this report contains a more complete discussion of the
support reconstruction method.

-
;

J.R. Fienup and G.B. Feldkamp, "Astronomical Imaging by Process-
ing Stellar Speckle Interferometry Data," presented at the 24th
Annual Technical Symposium of the SPIE, San Diego, Calif., 30
July 1980; and published in SPIE Proceedings Vol. 243, Applica-
tions of Speckle Phenomena (July 1980), p. 95.

2. T.KR. Crimmins and J.R. Fienup, "“Phase Retrieval for Functions
with Disconnected Support," submitted to J. Math Physics.

3. T.KR. Crimmins and J.R. Fienup, "Comments on Claims Concerning
the Uniqueness of Solutions to the Phase Retrieval Problem,"
submitted to J. Opt. Soc. Am.

4. J.R. Fienup and T.R., Crimmins, "Determining the Support of an
Object from the Support of Its Autocorrelation," presented at
the 1980 Annual Meeting of the Optical Society of America,
Chicago, I11., 15 October 1980; Abstract: J. Opt. Soc. Am. 70,
1981 (1980).
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2.1 ASTRONOMICAL DATA PROCESSING

Stellar speckle interferometry data was obtained both from the
Steward Observatory Stellar Speckle Interferometry Program (via K.
Hege, Steward Observatory) and from the Anglo-Austraiian Telescope
{via J.C. Dainty, U. Rochester).

The data from the Anglo-Australian Telescope was in the form of
many short-exposure images on 16 mm cine film, A number of methods
for digitizing the data were explored, and the one chosen, the most
economical by far, was the following. The 16 mm film was cut into
strips and contact copied, along with grey-scale step wedges, onto 9
x 9 inch sheets of film. The 9-inch sheets of film were then sent
to the Image Processing Institute at the University of Southern
California for digitization on their Optronics digitizer., Software
would then have to be developed in order to extract the desired data
from tne digitized array (which includes 16 mm film sprocket holes,
etc.). After the data was digitized it was discovered that the
Optronics digitizer had been malfunctioning and required repairs.
Tne film will have to be redigitized before further experimentation
can proceed with this data.

Considerable progress was made with the Steward Observatory data,
which was already in digital form, A description of that work is
found in Appendix A (Ref. 1), and is summarized below.

[t was previously known that it is necessary to compensate the
Fourier modulus data for a certain noise bias term due to photon
noise. Using the Steward Observatory data, it was found that the
detection process resulted in a frequency transfer function, which
we call the detection transfer function, which, in addition to being
an error itself, prevented the compensation of the noise bias.
Methods of determining the detection transfer function from the data
and compensating for it was developed. Methods of compensating for
other systematic errors were also developed. These methods were

13
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dpplied to stellar speckle interferometry data of a binary star sys-
tewr, and o ditfraction-limited 1mage was successfully reconstructed

trom the resulting compensated Fourier modulus datd.

Having gained this experience with single and binary star data,
tne next step will be to use the same methods on more complicated

abgecls, such as asteroids or Jovian moons.

UNTQUENESS THEURY

The principle means of exploring the unigueness of Indges recon-
structed from Fourier modulus data has been the theory of analytic
functions. As described in nmore detail in Appendix B, for the one-
dimensional case there are usudally many ditferent objects having the
sai Fourier modulus. Examples of both uniqueness and non-uniqueness
are yiven. However, it 1is shcwn that if a function or its auto-
covrelation satisfy certain disconnection conditions, then the solu-
tion is unique unless the separated parts of the function are related
to one another in a special way. Therefore, a functions satisfying
these conditions can udsually be wuniguely reconstructed from its
Fourice modulus (or from its autocorrelation). It is also shown that
1t tne non-real complex zeroes of the Fourier transform of a function
ot disconnected support are fintte in number, then the support of
the fanction as well as the function itself satisfy some special
cotebitions.  Thas makes it unlikely that the Fourier transform ot a

jiven tunction would have only a finite number of non-real zeroes.

[n the course of this work it was discovered that some of the
theory appedring previously in the literature was in error, as de-
seribed in Appendix ( (Ref. 3). The detailed corrected theory is

contained in Appendix B.

[ date the theory of analytic functions has not been extended
tu two Jdimensions, the case of most interest in this research effort,
The wwo dimensional case is not a direct extension of the one-

dimensional analysis. The high probability of ambiguous soltutions

14




in one dimension does not seem to be the case in two dimensions. In
a one-dimensional computer  experiment using the iterative
reconstruction algorithm on a case known to have two solutions
(Figure 1 of Appendix B), the algorithm converged to one of the so-
lutions in about half of the trials and converyed to the other solu-
tion in the other half of the trials, depending on the random number
sequence used as the initial input to the algorithm. Therefore, it
is believed that if there are multiple solutions, then the algorithm
is likely to find any one of them. For the case of complicated two-
dimensional objects on the other hand, the algorithm generally con-
verges to the object itself, and not to other solutions. This is an
indication that other solutions do not usually exist in the two-

dimensional case.

2.3 NEW METHODS FOR SUPPORT AND OBJECT RECONSTRUCTION

As discussed in more detail in Chapter 3 of this report (see also
Appendix D, Ref. 4), a new method was developed for reconstructing
the support of an object (the set of points at which it is nonzero)
from the support of its autocorrelation. In some instances, for ex-
anple to find the relative locations of a collection of point-like
stars, the object's support is the desired information. More gener-
ally, once the object's support 1is known, then the complete re-
construction of the object by the iterative method is simplified.
Several methods are shown of finding sets which contain all possible
support solutions. Particularly small and informative sets contain-
ing the solutions are given by the intersections of two translates
of the autocorrelation support. For the special case of convex ob-
jects, the intersection of three translates of the autocorrelation
support generates a family of solutions to the support of the object.
For the special case of an object consisting of a collection of
points satisfying certain nonredundancy conditions, the intersection
of three translates of the autocorrelation support generates a unigue

15




sotution. 1In addition, for these same objects, by taking the product
ot three translates of the autocorrelation function, one can recon-
struct the object itself in addition to reconstructing the support

ot the object.

2.4 CUNCLUSTONS

All ot Lhe results noted above are encouraging and are further
inuications that nigh resolution imaging by combining the iterative
alyorithm with stellar interferometry data is feasible. The pre-
Tiainary experience with astronomical data shows that although addi-
ttonal problems exist with real-world data, the problems encountered
so tdr can be overcome, and it is possible to reconstruct high-
resulution ‘mages from such data. Fears that the Fourier modulus
data might admit to multiple image solutions are largely unjustified.
fne theory of analytic functions predicts that a large class of ore-
Jdimensional functions are uniquely specified by their fourier modu-
lus; in addition, for the more practical two-dimensional case it
appears that the vast majority of functions are uniquely determined
by the fourier wmodulus. Finally, new methods were developed for re-
constructing the object's support from its autocorrelation's support,
and even tor reconstructing the object itself by a very simple method
ror the case ot a collection of point-like stars.

16




3
RECONSTRUCTION OF THE SUPPORT OF AN OBJECT
FROM THE SUPPORT OF ITS AUTOCORRELATION
3.1 INTRODUCTION

In astronomy, X-ray crystallography and other disciplines one
often wishes to reconstruct an object from its autocorrelation or,
equivalently, from the modulus of its Fourier transform (i.e., the
phase retrieval problem)s. It is also useful to be able to re-
construct just the support of the object (the set of points over
which it is nonzero). In some cases, for example, to find the r2la-
tive locations of a number of point-like stars, the object's support
is the desired information. [In addition, once the object's support
is known, the reconstruction of the object by the iterative

method6

is simplified. Therefore, we are motivated to find a
quick way to determine the support of the object from the support of

its autocorrelation.

In the general case there may be many solutions for the object's
support given the autocorrelation support. In what follows a method
for generating sets containing all possible solutions is given. In
addition, for the special case of convex sets a method for generating
a family of support solutions is described. For the special case of
point-like objects this method is shown to yield a unique support
solution unless the vector separations of the points in the object
satisfy certain redundancy-type conditions. If instead of manipu-
lating the autocorrelation support one uses the autocorrelation
function, then for the same point-like objects one can reconstruct
the object itself. In the following, several lengthy proofs are
omitted for the sake of brevity.

5. See, for example, H.P. Baltes, ed., Inverse Source Problems in
Optics (Springer-Verlag, New York, 1978).

6. J.R. Fienup, "Reconstruction of an Object from the Modulus of
Its Fourier Transform," Opt. Lett. 3, 27 (1978); J.R. Fienup,
"Space Object Imaging Through the Turbulent Atmosphere," Opt.
Eng. 18, 529 (1979).

17




3.4 UEFINITIONS ANU BACKGRUUND

Ihe results shown here dapply to tunclions of any pumber of di-
mensions except where otherwise noted. For simplicity we consider
only real, nonnegative functions. A function f(x) > 0, where
thN, has support S, where § is the smallest closed set outside of

whicn the function is zero almost everywhere,

The autocorrelation of f(x) is

1}

toF (x) ]/ Fy) fly + x) dV(y) (1)

[...[j:‘fm fly - %) aviy) (2)

where Vo1s the volume measure on EN. The Fourier transform of the
agutulurre wtion ot f(x) 1is equal to the squared modulus of the
Fourter  Lran.form  of  f(x). Note that the autocorrelation is
(ventro-) symmetric, It is most illuminating to interpret Eq. (2)
as a weighted sum of translated versions of f(x). That 1is, in the
integrand of €q. (2a), f(y) acts as the weighting factor for f(y +
<), which is f{x) translated by —y. [t can be shown that the support
ot the autocorrelation of f{x) is
A -;;S(b y)
=S -5 =X -yl X, ye s} (3)

Note that A is szmmetric:
A = A (4)

Tu 11lustrate the interpretation of an autocorrelation support, con-
sider the case of the two-dimensional support S shown in Figure 1(a),
having the form of a triangle with vertices at points a, b, and c.
The autocorrelation support A can be thought of as being formed by
successively translating S so that each point in S is at the origin,
and tdking the union of all these translates of S. Figure 1(b)

shows three such translates, (S - a),{(S - b), and (S - ¢). The rest

18
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ot A 15 friled 1, as shown in Figure I{c), by including all (S - y)
such that y ¢ 5.

we are concerned with the following problem. Given a symmetric
set A tN ting sets S € tN which satisfy A = S - S.

Sets by oand 5, are equivalent,
B, q ent

S; 7 95 (ba)

It there exists a point v such that

52 = v + 85] (5b)
= v +Bx:xe S]} (5¢)
ahere s o= + 1 or - 1, From Eg. 3(b) it is easily seen that if Sl

1, a4 sulution to S - S = A, and if 52 ~ S], then 52 is also a
solution, It 5) s a solution and all other solutions are of the
torm v o+ ssl, then the solution is said to be unique and A is said
to be unambiguous; 1f there exist any nonequivalent solutions, then

Not all symmetric sets are necessarily autocorrelation supports.
For non-null sets A it follows from Eq. (3) that

0eA (6)

15 4 necessdry condition for the existence of a solution. The fol-
lowing example shows that this is not a sufficient condition. As
shown in Figure 2, let A = {(0, 0), (1, 0), (-1, 0), (0, 1), (O,
-1)}. Because of the points (0, 0), (1, 0), (-1, 0) a solution must
include two points separated by (1, 0). Similarly because of the
points (0, 0), (0, 1), (0, -1) a solution must include two points
separated by (0, 1). Therefore, the solution must have at least
three distinct noncolinear points. Of the three possible pairings
of the three points, one has a separation along (1, 0), a second has
a separaticn along {0, 1), and the third pair of points must have a
diagonal separation. However, no diagonal terms appear in A, and

therefore there is no solution for A = S - S in this case.

19




Figure 1. Autocorrelation Support. (a). Set S; (b) three of
the translates of S that make up A; (c) autocorrelation support
A = S-S.

Lo
1.0

—— 4

T

Figure 2. A Symmetric Set that Is Not
an Autocorrelation Support
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A set X is convex if for all x, y € X,
tx + (1 -t)y e X (7)

for all t ¢ [0, 1]. The convex hull of a set X, denoted by c.hull(X)
15 yiven by the smallest convex subset of EN containing X. Thus X
is convex if and only if X = c.hull(X). If S is convex, then A = §

- S 15 also convex. More generally,

c.hull(X - X} = c.hull(X) - c.hulli(X) (8)
All convex symmetric sets A have at least one solution
S=da-ix/2: xe Al (9)
_2 = . €

Tne proof is as follows. Let u, v ¢ 1/2 A. Then 2u ¢ A, 2v ¢ A and

-2v ¢ A. Therefore,

U -v = % (2u) + %-(—ZV) e A (10)

and so (1/2 A) - (1/2 A) € A. Now let v ¢ A. Then v/2 ¢ 1/2 A and
-v/2 ¢ V]2 A. Therefore
Vs ) - (- W) e (3A) - (3A) ()
Y 2 2 2
and so A <€ (172 A) - (1/2 A). Therefore

A= (5A) - (3A) (12

3.3 LOCATUR SETS

In many cases A is ambiguous, and 1t would be useful to define a
set that contains all possible solutions. A set L & EN 45 de-
fined as a locator set for A if for every closed set S < EN
satisfying A = S - 5, some translate of S is a subset of L, 1i.e.,

there exists 4 vector v such that

v+S <L (13)
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There are many wdys to generate locator sets. For example, for v ¢
Y S oS = A, and so A itself is a locator set. Naturally,
the waoatler the lucator set, the more tightly it bounds the possible
solattons, and the more informative it 1s, [t can be Shown that a

St lor Tocdtor set than A s

L = A ! H (IA)
whero 1oty d Cloused nalf-space with the origin on its boundary. A
by o smaller locator set can be shown to be

p (15)

st o1y any N-dimensional parallelopiped containing A.

sopartiouldrly interesting locator set is given by the following

vleraectjun ot two dutocurreldation supports. If w e A, then
L=A "7 (w+A) (16)

11 Jucator set for A, Note that L is symmetric aboul the point

vio . Ine gruot that this 1s a locator set is as follows. Suppose S

LI oL - S50 Sinee w e A, there exist u, v e S such that w

. o sutder 20 S = v, Then 2 = s v wher> s e S, Z =S -~V

N B Co-ut {u - v) =8 -utwe A+ w, Therefore, z ¢ A
w Wy s oand Sy - v o L.

Mot arab by, the wust interesting (smallest) locator sets generated
tadv, aetnod ot intersecting two autocorrelation supports are ob-
Liited by whousing w tu be un the boundary of A. By choosing aif-
terent potnts w e A, a whole tamily of locator sets can be generated

gy L e thod,
Cennple 1.

fongider the set S shown in Figure 3(a), consisting of two balls
Subned by two thin rods, and its autocorrelation support A = S - 5

shown tn bagure 3(b).  An example of a locator set 1/2 P is shown in
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(b)

(d)

(e) ()

Figure 3. Locator Sets. (a) Set S; (b) A = S-S; (c) locator set
L =1/2 P; (d) formation of L = AN(w + A); (e) and (f) two other
members of the family of locator sets.
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Fagure 3(c); 1t does a good job of defining the approximate size of
o, but 1t s not suggestive of any of the details of its shape.
Fagure 3{J) shows the generation of the locator set L = A (\ (w + A)
tor a particular point w ¢ A. Figure 3(e) and 3(f) show two other
nembers of the family of locator sets generated with two other points
A ¢ A, These locator sets gene-ated by intersecting two auto-
correlation supports are very suggestive of the shape of the solution
{or solutions). This is especially true if one realizes that any
solution must be contained within all of these locator sets. Unfor-
tunately, for the general case it is difficult to narrow down the
solution any further: a way to combine the information from two or
more of the family of Jocator sets has not been devised. However,
as will oe shown in the sections that follow, for special classes of

sets nuch more can be done.

3.4 AUTJCUKRELATION TRI-INTERSECTION FOR CONVEX SETS

Fur the special case of convex sets A, a family of solutions can
oe generated by a simple method. For the one-dimensional case the
result s trivial: a unique solution is given by S = 1/2 A, which is
Just a segment of the line hulf the length of the 1inc segment A.
An equivalent result for tne one-dimensional convex case is the

Solution
S=A M {w+A) (17)

wiere w 15 on the boundary of A (at one end of the line segment A),
ar in symbols w e a(A).

For tne two-dimensional convex case, we have the following re-
sult.  Let A - EZ be a closed convex symmetric set with non-nutl

interior, and let

Wy e a(A) and W, o€ a(A) a(w] + A).
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Furthermore, let

B =A 1 (w] +A) N (w2 + A), (19)

Then
A =B - B. (20)

The lenythy proof of this result is omitted for the sake of brevity.

txampie 2

Consider the set S shown in Figure 4(a), which is the convex hull
of the set shown in Figure 3{a). Its autocorrelation support A = S
- S {which is the convex hull of Figure 3(b)] is shown in Figure
4(b). The paralletogram shown in Figure 3(c) is a locator set for
A. A member of the family of locator sets A M (w + A) is shown by
the intersection of A and w + A in Figure 4{(c). A member of the
family of solutions B is shown by the intersection of the three sets
AN (w] + A) F\(w2 + A) in Figure 4(d). Two other examples of

B are shown in Figures 4(e) and 4(f).

3.5 THREE-DIMENSIONAL INTERSECTIONS OF CONVEX SETS

For convex sets, since in one dimension the intersection of two
sets, Eq. (17}, results in the solution, and since in two dimensions
the intersection of three sets, Eg. (19), results in solutions, one
might hope that in three dimensions the set

C=AnN (w] + A) N (w2 +A) N (w3 +A) (21)
would be a solution ta S - S = A, where Wy e 3(A), W, € a(AY M

a(w] + A), and Wy e a(A) N a(w] + A) N a(w2 + A). Unfortu-
nately, this is generally not the case.

A counter-example to C - C = A is the following. Consider S
equal to a sphere of diameter one, then A = S - S is a sphere of
radius one centered at the origin. Figures 5(a) and 5(b) show
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(b)

(f)
(d)

Figure 4. Autocorrelation Tri-Intersection Solutions for Convex Sets,

(a) Set S; (b) A = S-S; (c) formation of 1ocator set L = AN(w + A);
(d) formation of solution B = ANM{w, + A)N(w, + A); (e) and (f) two
other so]ut1ons &f the forﬁ B.
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(b)

/"

(d)
(c)

Figure 5. Sphere/Circle Example. (a) Set S; (b) A = S-S;
(¢c) B = Aﬂ(w] + A).’\(w2 + A); (d) another solution to the
circle.
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planar cuts through the centers of S and A, respectively. Figure
A(¢) shows a planar cut through A ) (wl + A) (w2 + A)
tarough  the  three points, 0, W and Wy A (w] + A) M

‘w.. + A) ha$ two vertices, one in front of the plane of the page
jnﬁ one behind the plane of the page, both at distance one from the
centers of edch of the three intersecting spheres. Taking the inter-
seotion of this with (w3 + A), which is centered at one of the two
vertices, yives us C, which is similar to a regular tetrahedron (it
has Uhne same vertices) but having spherical surfaces of radius one
in place of the four plane faces of a tetrahedron. Looking for a
potent at the tetrahedron T having the same vertices as C (i.e., the
convex hall of points 0, Wi Wo, and Wy having ecges of length
one i, we see tnat T - T is a cuboctahedron, which has eight tri-

aigitar fdces and six square faces. Since 7 C C, T - T Z C - C.

~

e surface of ¢ - C can be subdivided into twelve patches associated
witn the twelve faces of the cuboctahedron. [t can be shown that
the eignt patches associated with the triangular faces coincide ex-
s_lly with the surface of the sphere A of radius one. However, the
,ix patches corresponding to the square faces do not. For example,
L Jdistance trom the origin to the center of edach of those six
ialones is equal to the distance between the centers of two opposing
cinges Gt L. This distance can be shown to be\[§ —\[5/2 = 1.0249;
tnat is, L - C bulges beyond the sphere by about 2.49 percent at
those points.  Therefore, C - C # A.

$.6  LUMBINATIONS UF CONVEX SOLUTIONS

solutions to convex A = S - S of the form B make up a family of
wulations generally having an uncountable infinity of members, one
for each w, e 3(A). Nevertheless, there may exist additional

Sulbgtinns,
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Aaditional solutions can be generated in the following way. If

5| and 5, are sotutions to convex A = S - §, then

2

St = tS] + (1 - t)52 (22)

is also a solution for 0 < t < 1. The proof of this result is as
follows

Sp - Sy = LSy ¢ (1 - 6)S,] < [45) + (1 - 1)S,)]

= tS] - tS] + (1 - t)S2 - (1 - t)82
(23)
= tA+ (1 - t)A
= A
since A is convex,
If 5] is a solution, then so is - S]. Then using t = 1/2
and S, = - S] in Eq. (22), it is seen that
1 1 1
Nz 7 =7A (24)

is a solution, as was previously shown by Eq. (12).

ERERE

t >0 and t

“q. [(22) can easily be generalized as follows. If S
501 10 o by 1

5n are

+ tZ Pttt = 1, then

utions for convex A, and if t

is also a solution.

Example 3

Consider the two-dimensional convex set S shown in Figure 5(a),
consisting of a circle of diameter one. A = S - S, consisting of a
circle of radius one is shown in Figure 5(p), and a tri-intersection
solution B is shown as the intersection of three circles in Figure
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5{c¢). This solution is similar Lo an equilateral triangle but having
arcs of circles of radius one with centers at the opposite vertices
for each of the three sides. It can easily be seen that all other
solutions B generated by Eq. (19) are similar to the one shown in
Figure b(c) except rotated in the plane. The circle of diameter one
shown in Figure 5(a) is not of this form, but it is also a solution
to A. As shown by Eq. (24), S = 1/2 A in Figure 5(a) can be gene-
rated by applying £q. (22), using S] = - 52 = B and t = 1/2.
une ot a family of additional solutions generated by Eq. (22) is
shown in Figure 5(d). It was generated using S] = 1/2 A in Figure
= B in Figure 5(c), and t = 1/2.

5(a), 52

3.7 THE AMBIGUITY OF CONVEX SETS

we now consider the question of uniqueness of convex solutions
of & =S - S for convex A. As mentioned earlier, 1/2 A is a solu-
tion. If all convex solutions are equivalent to S, then A is said
to be convex-unambiguous. It was shown that in two dimensions one

can generate a family of solutions by Eg. (19), the member of the
tamily being determined by the choice of wy. Eg. (22) or (25) can
then be used to generate still more solutions. Therefore one would
suppust that convex sets A are generally convex-ambiguous. However,
it s also possible that all solutions generated by Eq. (19) are

quivalent, in which case A would be convex-unambiguous.

In what follows it is shown that in two dimensions if A is a
parallelogram then A is convex-unambiguous. Let A be a parallelo-
gram having vertices wy, - w;, Ww,, and -w,. By Eg. (l6) a
locator set for A is L = A N (w] + A) since Wy e Ao It is eas-
ily seen that L = 1/2 w1 + 1/2 A, and so L' = 1/2 A, which has

vertices 1/2 Wiso - 1/2 Wis 1/2 w - 1/2 W, is a locator set

29
for A. Suppose A = S - S where S is convex. Then some translate of
S, call it S', is contained in L'. Since Wy e A there exist u, v

¢ 5' such that Wi o= U o~ V. Since S* € L', u, ve L'. It follows
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that u = 1/2 w, and v = - 1/2 Wy Therefore, 1/2 w; e S' and
- 172 Wy« S, Similarly 1/2 W, € S' and - 1/2 LPC S'.
Then, since S' 1s convex

, 1 1] 1 C o
L' = c.hull [{? W], - ‘2— W\, §W2, - '2—W2}] C S'C ¢ (26)

Therefore, S = L' = 1/2 A, and so S is unique among convex solutions.

It can also be shown that parallelograms are Lhe only two-
dimensional convex-unambiguous sets. Convex symmetric sets A C
EZ that are not parallelograms can be shown to have infinitely

many nonequivalent solutions to A =S - S,

3.8 AUTUCORRELATION TRI-INTERSECTION FOR FOINT-LIKE SETS

For the special case of certain point-like sets A, the solution
can be generated by a method similar to the one for convex sets. By
point-like sets we mean sets comprised of a collection of distinct

noncontiguous points. For example, a point-like function

N
f(x) =an 6(X~xn) (27)

n=1

consisting of N delta functions having amplitudes fn >0, n =1,
.., N, would have point-like support

S - {xn cn=1, ..., N}. (28)

The following result holds for any number of dimensions. Let S be a
point-like set and A = S - S. Let Wy oe A and w, ¢ AN (w] +
A), with 0 £ W, # W, # 0, and let

B=AN (w] +A) N (w, +A) (29)

2

Define the following Condition 1:
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[f xl, x2, y], y2, Z], 22 € S, X $ X2’ and

then
X| =Y, Or Z,, and Xy = ¥y or z,
1t can be snown that it 5 satisfies Condition 1, then
B~S (31)
That is, 8 is the unique solution to A = S - S,

another approach 1s as follows. Define Condition 2: if the set
6 Z A consists of three distinct points and if 0 ¢ G and G - G S A,

then G is equivalent to a subset of S. Define Condition 3:
1f X5 X5 ¥y € S, X} # X5 and Xq = X =¥y = Yy then X = Y-

we have the following two results. If S satisfies Condition 2, then
S 15 equivalent to a subset of B. It can also be shown that if S
satisties Conditions 2 and 3, then S is equivalent to B; and S satis-
fies Conditions 2 and 3 if and only if it satisfies Condition 1.

Since it requires a special relationship between the points in S
in urder thdat Condition 1 not be satisfied, it is probable that for
5 comprised of vrandomly located points, B is the unique solution to
A =5 - 5. More will be said about this later.

(onsider the point-like set S having 9 points shown in Figure
b(a). A = S - S shown in Figure 6{(b) has 92 -9 + 1 = 73 points,
Intersecting A with a translate of itself using Eq. (16), a number
of aifferent locatur sets for A can be formed, two of which are shown
in Figures 6(c) and (d). (Any solution to A = S - S must have trans-
lates that are subsets of all the locator sets.) Ffor this example,
for all allowable values of Wy and Wos B is found to be equiva-
lent to S, which is shown in Figure 6(a).
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Figure 6.
Points.

Intersection of Sets Consistin
(a) Set S; (b) A = 5-5; (c) and
form L = AN{w + A).
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[t can also be shown that even when Condition 1 is not satisfied
it is sometimes possible to find solutions (and the solutions may
even be uniyue as it was in Example 5) by intersecting A with itself
three or more times, However, when Condition 1 is not satisfied,
then there is no gquarantee that the solution is unique, and finding
sulutions is considerably more complicated than simply evaluating B
by £g. {?9). Unfortunately, given A it is not possible to immedi-
ately determine whether Condition 1 is satisfied. A necessary con-
dition that Condition 1 (or (Condition 3) be satisfied is that the
number of points in A can be expressed as N2 - N + 1 where N 2> 1

1$ dn integer.

3.9  RECUNSTRUCTION OF POINT-LIKE OBJECTS

5y a simple modification of the method described in the previous
scetion for reconstructing the support of a point-like object, it is
otten possible to reconstruct the object itself. The method is
analogous to using Eq. (29) to compute B, except that it deals with
proaucts of autocorrelation functions instead of intersections of

autocourrelation supports.

Suppose that the object 1s given by Eq. (27), consisting of N
delta functions located at the distinct points X, having ampli-
tudes fn, n =1, 2, ..., N. The positions X, are vectors in any

= -3

number of dimensions. The autocorrelation i$

w

hE(x) = [ F(y) fly + x) av(y)
—N N
- ;E] 651 fofms (X = x * x) (32)

which can be expressed as

[/ =

N
fdf(x) = frzl s(x) + Z }_ fnfmé(x - Xt xn) (33)

n=1 n=1 mn
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which has NZ terms located at positions x = Xn = X5 N of
which are at x = 0, That is, it has up to N - N+ 1 distinct

terms.,

At this point we would like to take the product of two such auto-
correlation functions; however, the product of two delta functions
is not well gefined. In order to overcome this problem, we define

the product of two delta functions as follows:
abs(x - x]), X5 = Xy

Las({x - x])]Lbs(x -x2)] T

0 ,X2¥=X]
Now consider multiplying fYf(x) by fokef(x - Xt xk), where
x; - % # U lles within the support of fo,f(x). The center of

K
the translated autocorrelation lies within the support of the un-

translated autocorrelation. This gives the autocorrelation product
(all sumnations are from 1 to N unless otherwise noted)

APIK(X) = Lf*f(x);”_f*f(x - X] + xk):]
= [(:ﬂf)é(ﬂ + Z .\_. ffas(x - x + xn)]
n o (34a)
[(}n_fi)é(x - X + xk)
RS
‘?]-:m‘,_#‘n'fn'fm‘é(x - xnl' + Xn| - X.I + xk)-/\ (34b)
f .
= (;}fg)f]ka(X) + (:%-fn>f]fk5(x - Xt xk)
N2
MRBL ot Flo(x - x. - x)
+ f.f Zfzd(){—x *X)+(O.T.)
Vg " 1 n
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where (U.1.) denotes "other terms" as will be descrived later. [As
an evample ot how tg. 34(b) follows trom tyg. 34(a), the fourth term
ot S 0 drases trom the product of Lhe sccond term of the tarst

witocorrelation with the second term of the second autocorrelation,

SUnm= Iy n' = n, and m' = k.J From another way of expressing tq.
By
o N N N
s O NTNTONT N b ff sk - x *ox )
[N vt et pa— et n mr m iyl n
H:] ”I:I ”':] ”l‘:]
— + - ~
LS X X X + xk) (34c)
L1 seen tndt terms survive at points
=X T Xy = X T X T X=Xy (35)

e terdis shown in Eg. 34(b) all necessarily appear. In addition,
ctner lerins way appear, as indicated by "+ (U.T.)". The existence
niner terms aepends on the presence of special relationships between
tne coordinates x - allowing Eq. (35) to be satisfied. There being
no additional terms is equivalent to Condition 1 (described in the
proviods  section) being  satisfied. If the X, were independent
cangem vdriables, then the chance of having additional surviving

terms would be small, and we would have (U.T.) = O.

_ombining £q. (27) with 34(b), the autocorrelation product can

e expressed 4s

. ? B , )
oS fn flkae(x) + 5(x - Xy ¥ xk)J + {0.7.) {36)

£k,
Tnerefore, translates of the supports of both f{x) and f{-x) are
contained within the support of AP]k(x). This can also be seen
from the fact that by Eq. {16) the support of AP]k(x) is a locator

set.
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Included an the support of AP]k(x) are points Xn = % and
X oK, 0o I, 2, ..., N. Therefore the center of f¥wf(x -
oot xk), 1" 4 1, k 1is within the support of AP]k(x). If
(Uu.T.] = U, tnen the product of the three autocorrelations is

,\i’]'\],k\x) = Lf*t(X)J-Lf*f(x - X] + xk].[f*f(x - X]. + xk)]

_,\F ( I_f*f(x—x] +x)]

N oL Y T
+ Z flz‘é(x-x'\+xk)+ Z fﬁs(x-x]‘fxn)

ngk, | ngk, 1

¥4
. (Zf”>é(x Xt xk)
n
+Z Z fnlfml 6(x—xmn +xn| —X]' +xk)

n' m'n'

! 3
P Z fnd(x—xn+xk)

ngk, 1,1

+

<Zf;] [fké(x) + flé(x - Xyt xk) + fl,d(x - Xt xk)_l

n

fK?It],fJ(x*x +< 2)fd
n#k
< fn?)tla(x—xl +xk) +<Z frz})’r]d(x—x‘, +xk)
n#l nle (37b

That s, the support of tne product of three autocorrelations has

i

+

tne sdme support as f(x + Xk)' as was shown earlier 1in connection

with Lq., (29), since B is just the support of the product of three

37




™ - oo ) . -0 - = -

such autucorrelation functions. Furthermore, except at three points

tne product is proportional to the cube of t(x + xk).
The values at all points can be determined as follows: First,
¥4 <0
f = fRf(0) D (36,
n

1% anown, so that tactor can be divided out from the last three terms
ot Lg. 37{a). Second, let the coefficients of those three terms in
L. 37(e) be {(with Z:fﬁ divided out)

- , 2 ,
A= D7 AP () = L fyf (39a)
-
B =D AP]k]'K(xl - xk) = fk f] f‘, (39b)
C =0 ap (xi, - x, ) = f f, t° (39¢)
= ke = X = T Ty Ty
Dolvang, we yet
A3>1/4
o= \ge, (40a)
f =\ (40b)
3 174
= \g5 (40c)
BLIM|
FEf ., = (asc)' /8 (404)

k11!

The remaining fn's, for n # k, 1, 1' can then be computed by di-
viding tg. 37(a) by fkf)f], and then taking the cube root:

1/3
Aplkl‘x(xn-xk)
f =

n f

{40¢)
o
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By tnis method f(x) is reconstructed exactly to within a translation,
as long as (U.T.) = O.

In pertorming these calculations, had we chosen a translation of
tne  torn (xl - xk.), k' # k,1 instead of (x]. - xk), then
the result would have been similar, except a translate of f({-x) would
hdve ueen reconstructed instead of a translate of f{x). If (0.T.) #
U, tnat 15, 1t Condition 1 is not satisfied, then additional terms
appear that make the analysis much more complicated and may prevernt

the reconstruction of f(x).

Various moditications to this reconstruction method are possible.
For example, the product of two autocorrelation products AP]k(x)
API'A(X) 15 proportional to f4(x + xk) except at three
poitits.,  Another example is to define the autocorrelation support

fanction as
N
Alx) = 6(x) + Y X slx - x X)) (41)
1=

which 15 Just « binary-valued version of £q. (33). Then the product
vt the autocorretation function with two properly translated auto-
corre lation support functions is proportional to a translate of f(x},
exient at a single point which can be determined by a few extra sim-

ple steps.

In arriving at Eqg. (37), it was assumed that the other terms
{U.T.) = U, or equivalentiy that Condition 1 be satisfied. The terms
included in Egs. 34(b) and (37) are those that necessarily arise by

satistying

(42)

trivially, for exawple, tor w = a, m' = k, and n' = 1. The other
terms are those that satisfy Eq. (42) by chance, that is, those that
arise 1n audition to those that (trivially) arise necessarily. These
other terms require a special relationship between the points in S,
and would not be expected to occur if the points in S are randomly

‘ . : N
distributes 1n some region of E .

39




—

These results, with some modifications, can also be extended to
the case of an object having support on a number of disjoint islands
naving diameters small compared with their separations (as opposed
to the support consisting of isolated mathematical points). How-
ever, 4as the number of islands increases and as the ratio of the
Jiameters of the islands to their separations increases, the prob-
ability of satisfying a condition analogous to Condition 1 decreases.
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. Dot ot ieterests ot Pogurier modulus data car be used to directly compute
= ot gt ion Lt cariect and not o the object itself.  In recent years, it has
A oot Poamer b Ul can be overoame by an iterative method? of cumput ing
LA o oetaae v ar o anqular) brightnese distribution, which uses the Fourier mndulus
: oL tollar ospeox e interferometry combiined witn the a priacri knowledge thast
' - ition Do oncneqaiive.  This method provides an alternative to other fine-
3 r . LT YGRS TSRS
L votenia il Neronr tris paper, stellar speeokle inteferometry and the jterative recon-

. oot are triedtily reviewed,  Then more detailed discussions of nalse terms and
MUt prer et Do gpeck e joterferoametry are given, and methode of obtaining an im-
(o tairate f g s traeonical abiect's Fourier modulus are descrived.  Finally, some
.. .o Ce cr Ll Wit toler o one et goare rown,

_tellar sperkle interfercmetry
. ! . s T pece e dnterforonetry Starts nhy taking g rumber of short-exposure
g fotroomyoal oo ject:
(x) - tix) s {x 1)
4]m ] x * m( } (
a e Do e st ial oaroanaolar Lriahtoeos ajstribution ot the object and spix) is
e et baortion gge tn the cambiced ¢ffects of atmosphere and the telescope for
: vy LT e The coordingte x i g two-dimensional vector and denctes convelu-
it conumen tnat the exposure time 15 stort enough to "freeze" the atmosphere and
, s5ow Speectral o handg o oased, The Fourier transtform of wuch short-expoanre jmane
oot - A lx) exp (177ux) dx (2)
m m

ch Aper, At

LOVWET =y ke

[EPEITS AT

11 letters
Inttera, A
arier o mon

will denote the complex Fourier

ni the coordinate o s
lus fthe summed pgower

tranc<forms of

referred tr as a3 spatial

e trum)

i computed:

the corre-

frequency.

M M M

2: T,(u,\/ - E:,V(u)& UJ)V‘ ‘F(U)‘JE:“v(n)lf (")
o ! m ' ! m

m 1 m.] m |
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Sy
[T A z“w T anc be thoouaht b g the Squeare of the MTE ot the ek [e ity fhg o
AN Gt peckbe MEESY Lt it can be b termined appracimately by o peptormiygg
oar e s e dinterterometey onoan taalated untesolved star o through atmoapbieric coneti-
' LT AN A ame S batisties st e throggh which the ob ject dmagery Dot e,
vyt PONe ot o ] et ram oy the ik e MTEC yie ], e nrding b b, (!i‘
[ PodTor b T it menhinboes ot tee b ber U]
Coc e ampd, e baarder toaret e of RGN tre autciorrelation of Coo et
o Ty ey ie? mee b bt Howeve r, toe autocorrelation gives onldy very limite:
toorn gt [ toe b o apameter, an the ceparation for the g e of g b inery
Caroes atemy bl o e speec bal e of DY an object known tn he centro-symmetric
i ot e e isalated amrecolved tar o witnin the Lame iooplanat i [ml’r;h"
T T T R S T oarc ) can the gutocorrelation, or eguivalently H(u)l/, he o
. Tl np ity the b e b
Ine Qterdalive methog
Ao e, i it et b e megaured bogrier madlus, the a o Jori o kriowledae that the
bt | oty e gt ive tonction, The reconstrogction problem conngjote o f
ooy s e it ive cnie ottt je concistent with the meacared Fourier modglos data,
’ Craloemooqn b Plve Ly the iterative method epicted o Figure |, Tt vonjisty, nf
START
Initial Estimate
T
|
i
I
-l &
— = F() —=c=ld¢
] X T l u
1
, Satisf
Detect Newatives. .y Measured
N Fourier Modulus |F|
‘. New t
Form Inpu Modulus
! [/
. - '
u<———«71<>¢———c':|r‘|e
\ u
Figure 1. lterative processing overview.
R A T Vot e corne ject s on(x) (which we usually choose to be a
[P A . : Lo b roer o trar ot gmed; (2) in the Fourier domain, the measured
oo AT, Tt s s s vy ompted Faurier modulus, and the computed phase is
P O T : [ A Ceer v bagrier trarstarmed, yielding an image q'(x); and (4)
Wotew e e e e s vy b by S bhe gb ject-gnmain constraints by g'(x).

<y G Lt aTee e atert ot il the o4 wnquagt el Rrror is reduced tn o4 small value con-
Sttt Wit tEe il atengic ratio ot the meacured Fourier modulus data. The mean-

1
Vil el Tot D0 tr dimae soemaio g
j([g'(x)l7 1 x

7/ v
t T o ——
u

j’ hw(x)Jy dx

whoeDe the Teojian ¢ inclues all proints a4t which g9'(x) vinlates the object domain con-
Ctraiots fwtere it i negqative or (oo ihly where it exceerds an a priori known diameter).
vunt gl Gifferent metbods tor chonion 3 new nix) have proven successful, For the results
Cowr et et we e faro o me  iterat fane

i;(') y x ¢y

”L(" -.su;(x), X by
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! L Cowt
al e, '
. (<) Te)
e 0 ‘.
v 1
N R R e, whee e A ripYt e e b foootre WU Phorat oo e g e
R : o, Morte bt i b oo dene b e Jberat pve o metbod od owhy 0wtk 1 e
B FENTEE SR SN ¢ AT
L B R T SO B N beewsr Late b, whenr pagtedo simbaer o owere o bt it il
; yodTet vt e bty Bt gt ien s we e readtead boroan o array  dze ot LZH o« 128 pive]
R R a0 et bosrerat saoss tr ot e by et red foor complicaten Yer cotimens faa.,]
ol e, b g bt twes minete e Float fog Point Systems AP JZ0H arTay procesenr,
wo- R oy, L T e o B S B L pooving (wh et can e ded crmine Srom o thee gt -
ot do st e doe e bobriaghtae o ratia wan et 3 the initial input, then only o
n B e Do Leqai el o onnveTgeitee bk o caiboagt YD seconeds It war baunag teogt
co S gt b ity et it o w e sutticieat oang the dfiameter canstraint was ant neededd,
Woinros G an et iee et e jr compen ot ian
T, A oot e s periment oy des o mihied hiere were ohtained from o the Steward Obuerv-
. P - st oy Proaram o which boodecribed dn mare get il o elsewnhere in tige
, ' TR Porotedn Mevent ocnctecbion® gty it is 3ssamed that o any gne chort
. e amaen et g oo mare thagne one photon in oany one pixel {and most pixels recard
Lt s wrte e i s omaanitied, dotecgified) and detected, (Anong otner
[ oD el ersty e g image concisting of onee (where above the threshe
R Docs bt dmarn 1 st vrredateay and fae wam o of 31l tne suatocerrelatioog s
Lot P mamaed power spe tram T compoated g the Fourier transform of the summes
' Sie Lt ooyt inn, et fmage s o centraided (translated to make their centroio
obent Y e e it the nearest pix ol oang the cam of the ceatroiaed images is computern,
e (o chameter b, 08 meteroy ane gt 30X manniitication ot the imane, the jaorco
I Ve T sat by s ar -en per pixe ]l glorg each line, and is about 0.017 arc-sec
I L Pt e o aret 3% dn tr ot timension relative to tre glong-line imen-

b s maandtioation the aogle T ol f o that,  The data i tiaitized in 296 x 256

e Cow s cowsmy I ot ot thranagh the sammed power spectrum of a0 anreca]ved
tsr, » et This ety was taken 4t 60X magnification (0,01 arc-ser per pixel - 4.7 «x
STt et dee bt S e wayelenath bang certeren at %0 nm, The Lrale in tre

. Lol Lo S e sya, ) s 100 pagd v Phe ) = 0,067 meters (of telescope aperture)
CTL las i b gt teecnpe djameter of 203 meters, the highest spatial frequency passed
e Py Tt e CLh ol el m/pix ) 2 37 pixels from zero frequer.y, Ideally
R Toabeernoatio A e aniar ), the summed power spectrum of an unresolved
L A A [F RIS S A S S FUT R tte telescope aperture (that MIF is the aulnoor-
[ ot bl ope papdi D fan tian) . Asaaming a circolar ap rture, a cut through
et e g tare My owoul haave o Touith ly crne shape® oand he sern heyond pixel 37,
rowe oyt P ogimmet pnwer Spectram o of the anrecolved star shown in Figute 7 is very far
£ O gy
Tl ottt mwmiogte tra e b tte power o spectrum, First, the sprckle MIFZ) men-
Sl vz i in groe tian o with o fg. 031, drops very rapidly for the very low spatial fre-
PEPIEEE RN STV L SYRNNPE BLAPENS GLATE D S SRR TN R AT T SN SN This result o the opike-like behavior of toe

St poawer peectpam tar overy Iow spatial frequencies. Beyond the very low spatial-

, o Teinn, o crivle MY o muet better hehaved aml denfeases clowly”. Second,
phator i e res it i, among nther thinge, a noise bias term in the summed power spec-
troaml Trejro ot fan term aomicats o in the higher spatial frequencies, Beyond a
Faidue of 87 pixely dn the cammed powel spectrum, ag signal energy exists -- it is purely
EITR IR Tvoey o anminate the comned power spectrogm that little usefal information can th
ottt e o ompenuation 1s made tor hiath of these two effects.

b [P

A
st

Tre vaine Gia, term and the detection tiansfer function

e woula ordinarily eliminate the noise bias term simply by suhtracting a constant from

Yo gmend W T ,pvw1rum1”vll. Howevel , das secn trom Figure 7, the noise tias term,
wtoior i aeers by dtuelt o teyond pixel 37, i9 not g constant in this case. This results from
e bt togt pan adetes tion o and thresholding, oo single photon sometime results in more
trare coe pixel reratiding a4 une, depeading upon the threshold level and the size of the
ot ot gt ewiting from the image intenaifier, Table 1 shows the autororrelatians
st ot jediv il quared transter tunctinnsg of some of the various patterns of ones re-

it toom g o sinagle phintan, bach pattern i, in effect, the impulse recponse of the de-
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Table 1. Event detection data: individual
impulse responses, their auto correlations,
R and their power spectra.

DETECTION AC OF DETECTION
IMPULSE IMPULSE TRANSFER
RESPONSE RESPONSE FUNCTION!

(1 o !
EE] nn 2 +2co8(27 u/N)

24+ 2cos(27 v/N)

POWER SPECTRUM

+ 2cos(4 u/N)

11 3+ 2cos(2m u/N)
1131 +2cos{2m v/N)

11 »zms[zn(uw)m]

E non 2[5z 3+ dcos(2m u/N)

o ) S Y 3
PIXELS

Figure 2. Summed power spectrum of an un-
resolved star (linear scale).
The middle and upper curves are
the same as the lower curve, ex-
cept have 10X and 100X vertical
scales, respectively.

te tiga system; ant in any one image, several different patterns may appear. That is, this
Impulse resporse may vary trom photon to photon within the same image. Assuming a sparse
papulation of photons within eacn image, it can be shown that the net sqguared transfer
fucctinn, Jae b the ersembde of photon-produced patterns within an image, is given by a
weigntea sum of the individual squared transfer functions of the individual patterns. Wwe
refer t2 tris weinghton sum as the detection transfer function squared (DTE2),

ire can cempnensate for the acise hias term by the following stepsl?. (1) Over the
“patial freguen ies abuve the telescepe cut-off, perform a two-dimensional least-squares
fit ot weiatte: sum oot ingividual squared tranofer functions (some of which are shown in
Tatie 1)t tre cummed power spectrum. Ry this, the NTFZ js determined. (2) Compensate

tr e Frast Aotne OTFS py dividing the cummedt power spectrum by the DTFZ (for all spa-
tiai frequencies). Hy this, the noise biias term is made a constant. (3) Subtract from
tre TR Coromperaated cummed powel spectrum Lhe cnnstant noise bias term., This DTF2

anit naise hias cumpensation are demonstratec in Figures 3 and 4 for the binary star system

:

i e, I this case, the magnification was 20X and the wavelength was 750 nm (10 nm
speotral handwidth) and so the telescope cut-off is at a spatial frequency of 74 pixels.
Triig ata ~et resulted from power-spectrum averaaging of 1820 short exposure images contain-
ing o total of auout 2.4 x 10° photons,

[n tte aurtacorrelation domain, the noise bias term results in a spike at the (0, 0)
Conriinate, and the DIFZ causes the spike to be apread over a few pizels ahout (0, 0).
arpensation for the DIF <4 causes the spike to collapse to a delta-function at (0, 0).
Tnen the subtraction of the noise bias in the Fourier domain removes the delta-function at
(U, Uy in the autocorrelation.

Maore generally, the functional form of the DTFZ s heavily dependent on the manrer in
wtiih the images are detected and should be modified according to the characteristics of
tre Jete tion hardware used.

Teoe wpece [ M”z

Lompenstion far the speckle MTFZ2 would ordinarily be accomplished by dividinag the
summedd power spectrum hy the summeo power spectrum of a reference star'., Both power
spectta should first he corrected for the DTFZ and the noise bias term.
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Figure 4. (A)-(C) Two dimensional view of
Figure 3(A)-(C),(D)rthe Fourier

Cive o Power spectrum of the binary SAO modulus, i.e., the square root
o led s (A)Y Middle curve: raw sum- of (C). Note: the residual
med power spectrum; (B) upper noise bevond the telescope cut-
curve  summed power spectrum di- of f frequency is visible in
cded by the DTF<, (C) lower this c¢ase and not in (C) because
rve  DTFY - compensated summed the squarce root operation re-
power spectrum with noise bias duces the dvnamic range of the
ubtracted., data,
o Ct e ey trere Da et gy ailgble t0e s ogmre nowe Tt L R RS AL IS ¢
L T A f : ! . ‘
I L S R A T G Sy B X SV o L AL S N L
B I S LT VRIS IEL R o e S
. ettt iy, ¢ s omet o lA e R
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oo gt et 6 ampenaat Doo bt e e e e Col : R
. BT Josrrelation the cgm oo f T ' ' ! e e Tt g -
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. v et T e QT from tree o mm e e ' v
S e e traat o metho . Flgare S0a) shows gooogb thipoag s e e e oo,
Wt s freenner des fr trw rrpesnlyet ot g e e T e e S I
Leia, e veragior tor overy Iow oapatial fredoera o0 viweever e gt b Py e D '
NPESDIAEE IR U YR B GERT S TN AU U S SEVA A KD IR ST SURN TR Dot o o ot st
Cooenrantially zera, Thus, bt owonled dppeear troat bra we v cgntp gt Tt n
[ co b tre sery lowest apatial o treqgoee o0 T i o L A
Jooo Py ot ling that the compens e cogmime poaer Tpa o b g e -
: r ot et ey e bt Lwefgbtenr b e 0T oot e g . T a
sre e Wity bar trese very dow spatisl frequen Dol we e trom b T e R AR
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Cy meAr -SGuaten crrur; Mewever o it [ s e et
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Figure 5. Worden subtract method on an unresolved star (low spatial
frequencies). (A) upper curve: summed power spectrum; low-
er curve: power spectrum of the sum of the centroided im-
ages; (B) upper curve: summed power spectrum (note expanded
vertical scale); lower curve: summed power spectrum minus

the power spectrum of the sum of the centroided images;
(C) same as (B), except a smaller percentage of the power

spectrum of the sum of the centroided images was subtracted.

et i “woitho woulda e true for objects of diameter only a small fraction of an arc-sec),

weo Tl lacie e ogmimedl pews T e ctram in that region hy a constant.  The constant i< chosen
toore L dstent with the value of the summed power spectrum in the region just beyond the
oia o cwstropensy cpixe. A o in thic caen of the Worden subtract method, this methoo doer
Troct o tor tre midele-frenuency ve, higher-frequency regions of the speckle MTFZ;
wiwer, ac rited earlier, tre -peckle MTEZ js reasonably well behaved for those spatial
freguensies, and werresting for the very low spatial frequencies corrects for the greatest

Lol IR AN S TR TS O (VS B
Tt aeteaoe f Lipping the commed jrwe Tospectrum to correct for the speckle MTFZ s
o trated io Figure £ four the ninary AU 94163 for which reference star data was not

coaiiat e, Ir uraer ta incrregse the accalacy of the assumption that the Fpurier modulus
(or ite sGuare, the powel spectrum) is constant for very low spatial frequencies, the OTF

40 0 nine=tiac-unrrected Foorier moduylus was divided by the MTF due to the telescope aper-
tars (wnich was approximated by the MTF due to 3 circular aperture of diameter 2.3 meters).
Trv wlliptical snape of tre bourier mndulos data is due to the difference in scale factors

i~ the two agimenrsions as noter earlier, Within the low fregquency region, wherever the
poLrier modulus exceeded a threasrold value, it was clipped to that threshold value. The
re.ult was multiplied by the MIF due to the telescope to arrive at our final estimate of
troee Fanrie modolus ot SAN0 Y410t including the telescope MIF,  In the process of multiply-
ivg hack in the telescope MIF, the residual nnise beyond the telescope cut-off frequency
wa, ottt oseTo,

[mage reconstruction results

The Fourier modulus estimate shown in Figure 6(d) was truncated to a 128 x 128 array,
inowrer to save computation time in the iterative reconstruction. This caused a slight
truncation of the highest spatial frequencies along the horizontal dimension of Fig-

1 601, BAL Y4les was reconstructen using the iterative method, and the imaqges resultirg
from two gitterent selections of tne initial input tn the algoritrm are shown in Fig-
ures 70a) ana (h), respectively. The rms error fg was reduced to about 0.05, For the
purpose of display, a (sin x)/x interpolation was performed on the images of Figure 7 in
nrier to incresse the sampling rate across the image. Irm order to aet an indication of
thie sensitivity of the method to the clipping threshold level described in the previous
cotinm, the clipping was done over again using o 33% greater threshnld value (which is
sbiviously gredater than the optimum threshold). Two images reconstructed from the resulting
Fourier medonlas estimate are shown in Figure 7(c¢) and (d). Half the time, the iterative
recanstruyction 4lgarithm produces an image rotated by 180° due to the inherent 2-fold am-
biguity of the Foorier modulus data.
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Fivure 6 Clipping to compensate for the Fiyure /. Reconstructed imapes of SAO
speckle MIF (for "secing') tor “Ales (see text).
the binary SAO 94163 (A) Four-
fer modulus, same as FVipure (D),
(B) Fourier modulus compensated
tar telescope MTF (attempted
division bv zero is evident tor
spatial frequencies above the
telescope cut-oft frequency)
(C) c¢lipping of the low spatial
frequencies; (D) Fourier modulus
et imate obtained by putting hack
in the telescope MTE.
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c.oontraduction

Tne prociem ot pnase retrieval arises an omany YaelAag: sproal
IWIrOranY, 3o astronomy, radar, intenna thegry, holoariaphy, nter -
terametcy o crastailoarapny, electron microsenpy, Fourier tranct rm
SpeLtratiapy, d snape recogrition ifourier descriptorsi.  Gtyer 4

iat1on 0 the phiase retrieval protlem, one would T1ee to <xnow 1 f
TUOUS L tdue. Tne general are-mimeasinnal phase retrieval uniquenes
Jrolaen s Se stated 1y faliows: TF F a9 a4 camples-va) Led functinn

etones on o tre regl lire ang Foi< ts Fourter transform, unager what

7
InatToons o toownat =xtent s f o teterminea by F 7 Jince F Y oac
e sourcer trapstorm of the autocorrelation farctoor ot ot thas
CrlGaem Do 2 2guisaiently statea In tne rarm: nder wrat condi-

U5 EG O whal 2xternt s f o gJetermined Ty 'tS autucorreliation

LUOTECS Saper o oae TeSLYICt our attention o the Case n wnaich f
Thooassumed T onave compact support (t.e., fix1l = 0 for x outsige 3t
name fonite anterval). Methods of reducing the number of tunctirng
Toniaing e same oDy Imposing disconnectecness cortiriong or tre
LLEDOrt St ot Crotne support of 1ts autocerrelatiun functoon ire ex-

area, Zemie ot tne theorems presented n this paper are refirements
ol CroIereciizations Of «xnown results and sore dre new. <l oprocfs

ire 0 TNe appen 3l o,

. Termingieny g Pralimiraries

nEOSLDEOTT, Lo, OF 3 complex-valued measuratle firctoon, Y o

-~ cear one. K, s tne smallest closed subset gt tne raszl lipe
TN le T ownIn s Zero almost wverywnere (a.e. . LInce Ly Tnara-
ng cts s:lues cnoa set of measure zero a function an De mage eqgual
v ZErD eyer wnere ort 1ts support, 'n the remainder ot tni< paper

plosunctions w0 e agsymed to Ce Zern everywhere ofY tneir sup-

- -

ports,  The cntereio ot suppert, [if0 = CApy Deg, 0r ot s the smali-
sotoTlonen tntee gt ntaveang 5o Tne oenter oo ¢t ey en

; - . *
e =g, .




1 anset ot Ros compact 1f at s contained in some
e € 15 tne complex plane. 1f we @, then w is its

Poarate ,G R 15 the space of all complex-valued
matie fanceions on ROowith compact support.

o R o, the cnvolution of foana q is given by
LD B O ( foinix -y ) dy
> . . 2
v tan tancmians e LSRG ds aiso in L CR )L We
. = * -« . Tre aytocorrelation of * 15 given by
juto(tt = r * f

. . —1wX -
- W = ( v P ax Uwe Q..
Lrrars owih ome 5Sea to jenote tne Laplace transtforms of the

-

w te T, the Corresponding lower case letters, [f F 15

v L e g gerireq Ly Friw) = F(W). If F is the
Syt owem + e empn Proc tne Laplace transform of £, Also,
<o 4. .oa srapotorem ot o3, then the Laplace transform of

Pt e tve _gplace transtorm Ot auto(f) = f * f

w e suneroon o €, tne function - s defined
c ~
et Lt e e R otmen noowg o= ),
e coroeevagd orera ot Fotnen apiwi st arler
N 1 v Zero oot totnen anw) 1S ONe-ng1 T ThS o arger,
Al

o
o




2MFo= {w: Im{w} > 0, “FF*(W) >0 andw 2 0 },

ARl
=
i

“ciw) - “F(W),

an:?

wiF = {w: JF(W) > O}.

¢ 4 and B are sets,
PR i\: xeA and xtB}
va, 8 Z R, then

~ ~ 83 = i 3 - b: aeA and beB}

it is tne complement of A in K.

't a and ¢ are real numpers, the functions f(x), f(x + ale'® ang
o a\eic all nave the same Fourier modulus. [f these are the only
©.nitions with that Fourier modulus, then f{x) is said to be unigue
3r 1 ts fourier moaulus is said to be unambiguous. Otherwise, f 1s
~yn-unigue and its Fourier modulus is ambiguous. If

(%) = f{x + a)eiC or g{x) = f(x * a)eic

wen Y oang g oare 2quivalent or in symbols, f ~ q.

“camples of Non-unigueness

.2t fi be oa positive integer and A = {1, 2, v e ., N}. Let B be

« ~

3 _upset of A and T o= AN 3.

Trneorem : L2t bn’ n=1, ..., N, and a he given complex

tarsers and let ¢, and d , n = 0, ', . . ., N, be defined by
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=

g

et

, r A N
‘I !, _ A\ n
a I\—an 1) . H(x - bn) = ,'__‘dﬂx
Ne B nel n=0
. o
foUe o an arditrary fanction in LS( R ), 8 a real number
N
Qi o= TC Fly - ns)
- — n
n:()
N
i = V‘( ! - n
nig) = S, 8).
"=
Giu: = ko, ¥+ ue R.
S oermilar ractorization tecvnique fs used oy Zruck ang
Soarple 1 et
!
T for < Vs
’ri\‘ = -
D otherwise
\

R - 2

) =6+ 5x + x

Z,= 0% Tx o+ 3k

SFlx - 41+ Fl g
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Then, by Theorem 1, G{u)! = H(u); ¥ ue B (see Fiqure 1).

cnotnis example, the two functions are quite simlar in appear-
#iee. inoparticular, they nave the same support. In a particular
ipplication, it would probably ne difficult to rule out sither one

i Tne roignt o salusion on the basis of a priori information,

Seampie U0 et fose 3s in example 1. How we use
. Z 1 Z 5 3
Joxor ikt o 5 x v 2) = 8+ 2x ¢ X7 o+ Ix
2 ] 5 5 3
g>\+11‘( —7‘*;):4*/"*‘1)(

a2
nix) o= df(x) + 7f(x - 4} + Af(x - 12}
eo CoaLre 10 Lgain, oy Theorem 1, 'G(u)‘ = H(W)' ¥ ue R.
Teo wwampie srowS tnat, unlike the situation in fxample 1, the
sty sdan nave d1fferent supports.

~ ot L iawing theoram gives ancother metnhod far qenerating exam-

oS toron—gnlqueness,

Tregrem Do etor Qr,'._lq\' R oang
hy = ¢ * 8]
' S
n. = f *gq.
- —r
C L = H I M r I{
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)

-xarples 1 and 2 could have been obtained by uSing Theorem 2. In
cereril, "negrem o 1s useful in generating examples of non-uniqueness
noanIcn poth functions are positive because if f and g are positive,
TREn 50 are Nposndg n,. (Note: Theorem 2 aiso holds for functions

2t twe o or more variables., )

1 Saar s 3t ngueness

ceovwma so3ng 4 oire presented in thas section out of logicai

Polmr e i,ie tre . are needed In the aiscussion of exemples of unique

oot Teere oraofs (see aopendix) use Corollary 3 to Theorem 3
. ol s, Doty Trneorem 3, 3 function tois unique 1f F onas no

Searpies i et fooe as in Examples 1 and 2.  Then
sin w
2 Z—— for w g 0
W
Tiwio= 2 SInC W =
2fOr‘w=O,

nus, 7 oras ng non-real zeroes and therefore f is unique.

e “oilowing theorem gives a method for generating more examples

C NG eress,

Trecvem i et Ts;;( R ) be unique and let bn be complex num-

RIS TS R S =1, n=1, ..., N. Let Chp N = 0, 1, . . ., N, be

inos Ter
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n:O

where £ 1. g real number. Then g 15 unigue.,

Coreiiary: [f f 1s unique and

gix) = f{x - 8n)
n=0
ther ¢ 1s unigue.
txample 4: Let f be as in the previous examples and let
N
g(x) = )_f(x - 4n)
n=0 :

Tner, by tnhe corollary to Theorem 3, g is unique (see Fiaure 3),
Anothier method for generating examples of unigueness i1s given by

tre to.lowing theorem,

Thegren i If f, geLé(]R y, f is urigue anc G has no non-

regl zeroes, then f * g is urigue.

txample 4: Let f be as in the previous examples and et ¢ = f = f.

ner., by Theorem 4, a 1s unigue (see Figure 4).

~. Factorizetion of r

Let fel’(R ). Then auto(f) = f * Tell (1{) and it follows
from the Paley-weiner Theorem ([2], p. 103) that both F and FF* are
entire functions of exponential tvp . Since FF* is entire, D(F) (see

Sectyon 7)) is countable.  Let its elements be numbered
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such that {ﬁwn.}w is a non-gecreasing segquence. The following
n=1}
factorization 1s essentially due to Titchmarsh ([3], p. 285, Thecrem

Viy., (Nhote: In [3], Titchmarsh defines the Laplace transform as
as opposed to our

Tnerefore, in using his results, appropriate adjustments must be

maas.

Thecrem 5: We have

(w_) (w )]
o n w n w
1 (m),om TCe NN T
:(\N> = ETF (O)W € ] - W_ 1— -

n=1 | n *n J

where m = ZnF(O) ana the infinite product is conditionally

converaent.,

Tnis particular form of factorization of F is chosen to facili-

tate “zero flipping" araquments which will be used later.

In the sequel, we will also need the following theorem,

Tnegrem 6: If g is an integer-valued function on € 2 0 ¢ 8(w) < r

fw

n.

¥ we € v Rang o < 8(u) < EnF(u) ¥ ue B, tnen tne nfinite product
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<

) B(wn)
« |V
W
[T—
1 - Y
n:] l— Wn
is absolutely convergent ¥ we .
The next theorem has to do witn “flipping zeroes." More will pe

saild about this in the next section.

Theorem 7: Let chg( R ) and {wn}(x be the distinct non-real
n=1

zeroes of F. Let g be an integer-valued function on € 3 0 < elw) <
“or we € NR and 0 ¢ 8(u) ¢ 2ng(u) for ue R . Let

B(w )

w

o I

wn

G(w) = F(w) —
n:] W

n

aric let g be the inverse transform of G. Then ‘G{u) = Ff(u)} for

o R, QELé(. R ) anc

6. Functions with Disconnected Support

In tnis section, it is shown that the probability of uniqueness
is much higher for functions whose supports satisfy certain discon-

nectedness conditions.

Let In, n=1, ..., N, be a sequence of disjoint closec inter-

vals satisfyina

6.1) (I, -1y NMN (I, - Ik) =0

for J 2 k and <n, my % <j, k> (where < , > denotec orderec¢ pair).

Let
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- e ¥

N
A= U In'
n=1
_et f, ch;( 1) satisfy
S(f) € A and S(g) € &
anc et
f(x) for ern
fn(X) =
0 ntherwise
an g

(g(x) for ern
9 (x) = <
LO otherwise

tor mo= 1, . . ., N. Finally, let

it
—
-
-
=

We 3ssume here that fn;é C, n

Theorem 8: Let f, g, fn’ and g, be as describea above. |F(u)] =
Glul] ¥ uc Riff 3 a rea) number 6 and an integer-valued function
a defined on @€ with 0 < a(z) < min [”F (z)] ¥ ze € \ R ana

- T<neN n
C < alu) < 2 min [nF(u)] for ue R such that if
)S”SN n
. W a(z)
z
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trier tor N Uy

1(cf—c Yw
TG w) = e S O(w)F_(w)
and c - ¢ =C¢-C for n = 1, . N,
n n
anc for N = 2, either 1) holas or
1o v )w
. * o ' f g ‘
o Uhfv»‘ = € (.O(V')Fn(w)
anc cf" + cgn = C¢ + ¢ forn=1, 2.

t the runctron f 1S a more or less arbitrary function gotten
from the real worle {but satisfying the hypothesis of Theorem 8),
trer 1t should almest always be the case that B = ¢. For this case,

we obtar tne tollowing result:

orolary 1o f B o= ¢, then "F(u) = iG(u) ¥ ue R iff f ~ aq.

In 747, Bates states a similar result but with too weak a hypoth-
€S15 ang toc stronc a conclusion., (See both the discussion imme-
clately following anc tne discussion following Corollary 3 to

Tnegrem S.)1 it srould be notec that Corollary 1 does not hold if it
is merely assumec tnat the In are disjoint. To see this, let f, ¢

ang n pe d2finec as n Example 1. Let

cet g ana h play tne roles of f and g in Corollary 1. Then Z(Gn) = ¢
tor n =1, 7, % anc hence B = ¢. Also, 'G{u) = H(u) ¥ ue R but

g ang h are nct equivalent,

By setting M = 1 in Theorem &, we obtain the basic “2ero-
flipping" result of Hofstetter and Walther,
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Corollary 2 (Hofstetter [5] - waltner [6]):  F(u) = G(u)

¥ ue R 1f 3 a real number 8 and an integer-valuec function o de-

finea on J(F) with 0 < alz) < anz) ¥ zeZ(F) such tnat

N alz)
. 1 - =
. e -C Jw -
Gw) =e®e 9 Frw) I1 2
2el(F) 7

Flipping all the non-real zeroes of F yielas tne following

relations:
.emma 1:
nF(Z)
] ‘“W
m . 21C,w -z
Frlw) F—mr(—o—’ e Flw) H z
P 2¢7(F) Lot
opiz)
AT P- 2
m \ c1C W -
JE m/(O» e Flw) [l Z
Frto) zew(el U 77
wheres 0= or (C)

Since F* is the raplace transform of f anad f is equivalent to f,

we obhtain:

Corollary 2. Thne following are equivalent:
1. Flu) s unambigquous.

N

F{w) has no non-real zeroes or one non-real zero of order 1,

AN
.

(@8]

F(w)F*{w) has no non-real zeroes or two non-real zeroes of

order 1.

65




“oreliary 1 osufrers from tne arawback that botr f arng g must be

wvute e bave tnear supports contained in A = (1 . For tnis

n=1

reason, 1t cannot be concluded that f is unigue. Tne necessity of

.

s conartinn can he seen from the following., Let 7, g anc h be as

et ned o Dyxample et n play the role ¢f tne functron f in

”U,H:”\ 1 »—];‘ ]f'\
. C-0.5, &8 ang 1. o= VR 12050,
e DLoance 1oosatisty thie separatior conartior £.01, 0 Let hn be the
ves s tror of noto In’ n=1, ", Tner “im 1 = ¢ arcd tnerefore
g, <~ Hiu) o= Glu) ¥ oue B otutr o arg ¢ oare not equivalent.
Teever e oo oact unique. A Simrlar result occurs n othne M o= 3
PN AT —
o, R L, = (35, 4.5) ana 1, = [11.5, 12,57,
(% o

Leotrer grawlaos ¢ tngt tne functions foand g of Corollary |
et e Trere fure the xnnwleage that their supports satisfy
st e et ok v tne farm ot 2 opriori knowledge.  The next
The e a4y 13 fre s grawbaCks tor positive by Imposine a separa-
v et o s tree qgpport of the autocorrelation function of f
tea et e cLppert of 4, Since tne autocorrelation function g
serogrt o e ame for oany two functions with tne same Fourier

SlLoL, the e Irdwbacks disappear.

towe teeeC twe lemmas. Although the first of these lemmas is
et st for opositive functions, we state anc prove it (see

appercia for artatrary complex-valued functions.

ez 2o Let fel{(R ), 1(f) = [a, b.] and Tlauto(f)) =

-¢, ¢.. Then

d = bf— a¢-
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The next lemma is really the heart of the matter,

cemma 31 Let feLd( R, f > 0 and Ilauto(f)) = [-d, a]. If

nd s 0

y > O ang

el Stauto{f)) C [0, - 5 @] U {=v, ) U {p0, d]
trhier

Ll S{F) = lags ap *+ v) U (og - v, bl

Lote:  Lemma 3 is not true if tne condition that £ > 0 1s

arcppec. Tne function described in Figure 5 is a counterexample for

yo= oo,

hNow suppose f osatisfies the nypothesis of Lemma 3 with vy = d/3.

=

“f(x) for xelag, ag * % d)
.0 otherwise

| -
f(X) for Xs(bf— § d, bTJ

fr(X) =
4
0 otherwise

usine trois notation, we have the following theorem.

Tneorem 91 Suppose feL;( R ), f >0 and I{autolf)) = [-c¢, al.

S(auto(f)) & [-a, - % a] v (- ,‘3 d, % d) U (54, a]

and
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\

L}

et £ 18 untgue amona nonnegatve tunctions; e, faelT I
; e

N

g~ U ang

Giu) = Flu; ¥ ue R

ther ¢ ~ t.

SfoLourse, using tris tneorem requires the a priori krowledge
Trat tre tunztior peing searcned for s positive. However, thery

reomary applications inowhicn this s given.

We now turn our attertion to the case in wrich G is qotten fror

ti
ooy titpping orly e finite number of nor-real zeroes. Let {mn}
n=1

DE @ artitrary *onite sequence of distinct non-real zeroes of F and

et
BT‘
M-
WT
Giw) = '
"
n ! W
n
where trie £ are integers satisfying 0 «< E, WE) and F 1s tne
.aplace transforr of a complex-valued funct1on fr_o (). et g pe
thie nverse trarsform of G, Then, by Theorem 7, gei ; R ) and
it 2 ila,

_et /€3¢ genote the complement of S(f) witn respect tc R . Let

S [ . L o x
S(f) { s af) . U " U

m=1

Le tne decompoction of the open set S(f)' into dis<joint open inter-

vals where M 15 eitner a finite integer or M = «, Similarly, let
.
i
Gleht =z - ( \ )
alg - Al Ul U | Y (g,

|
l
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Wn |
} —_— r= -1, 1
/ w 3 b -
- =
n=1 ! w
— n

[RSRRETE ST ownere o e ey gt e e
L ' Triploe o 4 - =Ydis Cara )
at, L e et . a({ = i, an fT e gy
~ "rn‘ Y‘r,, , M= 1‘, . .y H
fovute tne Candhtinrs gefineg v tre prececonn ty
AT SiMe Mo3ra [N pﬂ A C- ' t’ trer
(‘» B
Pfix for &, < x ¢ =
| f =" 2
! i <
f‘}\x - \
L@ Otherwisge
Tfix) for t < x < U
) m - - f
‘\‘ X = *i
I G otherwise
Talx) for a, < x < &
o f="="7r
q 1{’ = -
T =
[ otherwise
fol») for t < «x
‘ ) 1 —- <—bf
[0 \/x =
ot = W
L0 otnerwise
= 1, . ., N, are zeroes of betk F 1 and E] I
3
MW
N
(v) =% (w
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ar ! | 4
Nt u bt owds proved Ly areehdway tor the 7oghe 0wkt
M [ c L ol € LR o
! L T i i n = . .. L0 I 1A G (v
e - i W P = . .
o E1EROH " s . R
fre ven doec nat RO wter dr et Tl puTher S Seraes are lionen.
L L il ot . . . 0
\ s .
- N Y - IS . - . , C g -
Nenl . owe RS der turTlroary e I\ oYW [ - 6
i v . R ~ +
o tar geritratioan st e 3 LR Tropartifuadr, tra o cpnfat e
v ~ i - >
. . .
vnonatietres 1F F oy g oo te namier Of menavean ZEUGES, reT R
B ad oo ' P D -
¢ ‘- e St e
o= 1T gnow tnat the sdpportys »f ocurn funtitone an tne “yrttn
G gt GaTISTY SIPE Speclal TneluionG,
.- Y. a6 e YrAT T
Cop s mpligity 01 CISCuSS0n, 1l e De anhdine it
. ' N Y e e ac
- : S J = = ] . . - .
te e antervals fo= o o T Iy s s

Trearer 1L ASSuUmE =

. , o Shier
\ . "
e T
{ §
Tt
f )1,
f |
] ¥
Cre weatr vt
T ERER B

= 0. 1f wW'E

.

leix)

for x

<

O otherwise

v getanitron of cF) ana

Fofw) H
{

ZeW(F
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M
)

> G

LC atherwise

¢ ¢ zere of notn F ) ana Fy of orgers > Tt
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Tneoreom 1o Assume Ce o= 0,

> 0 ana Pm M f-Pm

I wiF)
Y # ¢ then;

is fintte arc for sorme ™

1 ¢

f ](x\ =

fo(x) =

] =

tren each zew(f) 1s a zer~ of F

(fix) for x ¢ -t

J’f(x) for S <Y< Smc

m.,

0 otherwise

2 v

.0 otherwise

‘(f(x) for x > trr
2
folx) = |

LO otherwise

and f, of orders > cc(z),

-]

F
-1 o

)
oF(L

* \ F(r/(o\ e ( . ﬂ z '
" (V'/z'ET-/_' w) ‘
! AT zew(F) | T ';‘_J
an
o '2
o SN
ST i*i'(oi Fo{wl IWI _z
O T Ty O o
B ZeW(F) | 2z
— J
where r = ?nF(O).
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SUMMGE Yy

re problen of gnigueness in phdseé retrieval wae ~xpiorec,
Vetnonlo oot ogenerating unigue and nor-unigue funttiont were precerten
TUowas shown that af g turnictior 1S comprised of pdarte witran reqgiore
*osupport o Satistying the separation condition of f¢. €.700 ana 0
TR Gre RO Nen-rear zeros common toogll othe teancforms of tne qea-
ter U, e tne tyunction is ounique among functions wrtr the same up

LU nowever tre funtion s not necessarily wrague amene ail fueo

e Furtnermore . 1t was shown trat 1f it o i1s known tnat ore func-

L)

v oetten fron tne other by flipping at most & finots namber of
Joros, ther tne same conclusion nolds with the congrtror cf Eg. ¢.7
S ooaled by the weaner conditior that tre reaicns campl, Se Gireicnt,
Soronennegative fungtions naving qutocorrelations whose supports
iathafy rectain crsoconnectior conditions, 1t owas shown tnat if tne
ranitormy or tne seaments of the function have no non-real zeros

ST trer tne fanction 1S dnique amonc nonneqatlve furctions,

Firziiy, 1t was shown that if the transform of 3 functtion nas

vty 2 tanate numner of non-real zeros, tnen the support of tne furc-
a2t welhoa tne function itself satisfy some special coancitigne,

~Oe O eeamentys Trie work was supported by the Sy Force Tfice

s CTer s tag kecegron ognder Jontract No. FA96Z(-8(C-C-0C00f. Thepren

4 aenerd) - zatror of ar example communiicated by N, Hurt,
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Append X

i[QEf_Qf ineorem 1:
Glw)
[PREN s
N
Hiw! = A g - 1ngw
o— n
n=0
N
= Fiw) Y d {
ANV o
n:O
- S{wia ] ;\
ne B
= Glw)olw)
WIEr e
G{w)
for ue R,
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We have
N
= S, e M)
n=0
Iy
= Flw)S ¢ ¢ —isw)n
— N
n=0
N
- r(w)aT[(e“S‘” b
n=1l
‘F(w)
-18w.n
/
(_F e-"iBVv




.

eogt ot 7

ar.t therefore

neorem 2:

Proofs of Theorems 3 and 4:

! o
Y- 9B - — -13U ] s
SN (-b © 1) (b !Bl
BT -78u Bu =,
T (e - Dn) ( - tn}
5 .
by - 2 Re (b e'®Y)
= T [a)
1-2 Re (b ™) + b ¢
= 1.
Tnerefore, for ue W, f{u) = 1 and
H(U\ = G(U) '“«/NU) = G(U\ (J.Z-U

C.t.l.

The proofs of these theorems and

trhe corgllary tc Theorem 3 use Corollary 3

to Theorem & and therefore

appear mmediately following the proof of that corollary.
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Froof of Thneorem 5L

FIrst, Suppose m

0.

RTINS f:L;J RV, f is inteararle. Tnerefore, by |

"heorem Vi,

; W
CACW e \nF(Wn) p .P'F(v'n
"{W):F(O)e f Hh»yv—\ /]_.‘_\'
b V'r / \‘ W )
N=i " no’
Nove suppose o () et
X
ayn = [ e o
&
Tner ot a, ng] = D¢ anc cg] = Cs. Also,
C, by % ‘
( Q. fx)) dx = v[_ ﬂf f(t) dtlax
2 4 9
Lo * .
< f { el dt dx
a, éf '
o be
< f kf(t)} at dx
¢ LY
D¢, _
= - ) o
(be - a) f ff(t,fdt <
f
Therefore g is integrable. Furthermore
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b
Elw) = J f(x) —TWx
a4
—1w>(‘bf bf -IwWX
= g,(x) oY iw g (x) e ax
|
% 3
= WG, (w).

St follows tnat G (w) = ”F(w) ¥+ w# 0. By repeating tnis process
m times, we obtain

Flw) = (w)"6_(w)
where Gme) # G. Now we apply Titchmarsh's theorem to Gm and optain
N ng (w,) np(w,)
T f w w
Flw) = Aw' e (1__.> (1--)
H Wn \ W
n=1 ' n

where A is a constant.

¢ evaluate £, let

4

1
Giw) = - Fw).
W

Then, by expanding F In a Maclaurin series, we obtain
, 1 (m)
(0) = m F (0}.

On tne other hand,
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Settane v o= Uy we obtarn
Gy = 4,
Trerefore
A:%-!F(m‘(\r,.
Proot of Tneorer 6: et 3 (w) = nF!wj for we €~ aro . . -
Sroutotar e . By the Paley-weiner Theorem ( 27, p. 107 | ©.u°

ar entire function of exponential type and by the Hagamarc Factoriza-

tior Tneorem (D27, p. 20)

= YF(WH)

e = e T - = LI
Fiw' = Aw e H] - exp[w YF‘V'W'}

\ n r
n=1"

whi-ve tne infinite proguct s apsclutely convergent for all we (.

Cy 3., p. cEL, Theorem 1, the series .

ZYF(wn) Im( l—n>

n=1

17 ausoiutely convergent,

‘v tnen follows {(see "&£}, Tneorem £, p. 223) tnat tne product

n

[T exo v tw m(;_)]
n=1

Yo aucolutely convergent, Therefore, tne product

Von et ()]

15 avsolutely convergent. Now F*{w) is alsc an entire function of
£

exporrential type witn zeroes v, O orders v (w_ ) = y (“n" There-
Fx C

fore, by the same reasonisg,
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_x YF*( n
/ w = ]
1 - - exp | wy *\\Nn‘ ke <r)
\ W F v
n=1 n n
- \YF(Wn)
= 1 - \ exp fwy. (w_ ) Re l— ]
= ( - ) e (W, :
nol v n/.

converges apsolutely., Then

n
1 - ®
N w
n
w
n:] ] - W-
— n
YF(Wn)
1
) <1 - §—> exp [WYF(WH) pe(w—ﬂ
w L n
_ n
- ye(w )
nel VP

carverges absolutely. It follows a fortiori that

e(wn)

1 -

- ™

n

w
n=1 ' - w_

n

converages absolutely. Q.E.D.
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=

ang ¢ are square-summable., It remains to show

I
—
—

-
—

g

A

Tirst we srall snow tnat 1(q)

N
5N
-
™
o

and et 5, De the inverse transform of Gm.

“13im

Let wy be an arbitrary non-real zero of F. Let

79

Proct of Tnecrer 7o et
8(w“>
A
Wn
\ A —_—
“(“'_TI'J w
n:] w
£y Tneover F 0 trrg anfanite product is absolutely convergent ¥
" Q' NN
W)Y =1 ¥ ue R,
Siutoo= o R Since F(u) is sguare-summable,

it foliows that G




and 1etl n be tne inverse transform of H, 7o prove ¢
tooshow that
.*fn\ = '\f;
_el
- 1
(W) = " —;
0
e ity e Ry ovs sauare-summable,
A
W w W
[q] o] ¢] - .
= = - — (\N - W LW,
w - - 0 N
T - = wo ho
Ve
0
LEE
"o *o
Hiwl = — Flw) = — (w_ - w_ i " wlfln
—_ - O {1
w w
0 0
=l vy b= tne inverse transform of . Ther
: 1V\f)l
Yol = - = Tsgniv ) o+ sanixil e
A I ~
whers w_ = 4+ 1, ang
C : {
J’ T ofor > 0
sgnit) = L 0 for =0
-1 for t <

From £.3), we qet

wO WO
h()() :_—-f(x) - - (WO

w W

¢} o]

To prove 8.2), it suffices to show that

£.4) Hy * f) < I(f

— oty
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L

Fargt cuppose v o> (0. Then

0
; 1wOX * -w_V
vy * £1{x) = - x € j[f(v\ e v
Tnerefore, for x < ag, (y * flix) = 0. For x > P
; 1wcx X —iwoy
\Y*f)(1\=—758 f(y)e ) dy

It
oD

Locomilar arqument vields tne same result for Vo < 0. Tnis proves
.4 wnige mplies £.7) which n turn implies 8.1,

we o Thade

Giud - G (u) E__’.O ¥ ue R
Eartnermors, Since QU o= ‘;ﬁ(u) =1,
2 2
Py} - { Co= QU lu) - clu)F(u) T
Giu) Gm\U) {u)flu “m( ) )
2
= Olul) - c‘(u)‘z' Flul
m
2
<4 Flu)©

Since Flu) 2 is summable, it fcllows from tne Lebescue dominateq

¢nwergence theorem that
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(.Slu) - G _(u? oy F::, g,

.
e, Gm converges to G n the L7 norm, Therefore g, converges to o

motne _< norm, Since

it fallows that

Now let alw) = s(;). We have

nG(w) = nF(W) - 8(w) * B(w).
Tnerefore 0 < alw) 5»”G(w) for we € ~Rand 0 < a{u) < ZnG{u) for

oL Let o be the distinct non-zero zeroes of G. Then
n=1

ang a similar arqument yielas

1(f)  11g) Tl
Sroof of Theorem €: Assume (F(u) = G(u). ¥ ue R. First we
consiger tne case N £ 2. Then f * 1 =g *g. Forngm f *f s
tr - j ion f 1~ 1 _ ~ . . .
tre restriction of f * f to bn - I and o, * g, is the restriction
of w xqte I - Im. Therefore

Ft * f
ORI = m
L Fn m GnGm or n g
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. o .
. N '
v
3
' Yy T
RO 1IN
"w'!t"'”“f, -4
R 4 -
PENER ! -
- P 5
o
T )
LA -
[
LTt e At fne
[ S S
L}
T B 4
ARSI A=t N

Ty, 0 A e e rgronct drtegere 3r 5
* * * *
I O =n G G G
NNy ST (Pl (R e
. o S 1 7 I
* *

E e — G -
HE. = [&] .

n, n. n,n

HE 13

St tnese functions

on =.7 and ontain
*r C*
FooF =6 G .
n2 n2 n2 n2
N> o3,
.- ~ *
- F =066 forn=1, .. ., N
nn nn
neids alse for W= 1 since FF* = GG* and, 1n this case,
= G. Putting 2.5 and 2.& toagether;
* *
Ty .85 - n =
. uri\,m far n, m = ], I '
s from &% tna
DOF 5 = DG
OUF [(Gn’
- , o= 0, . . ., N, Now we number tne clements nf
5,
[ , . R ~
D o= Wk,n' I N
SR JUen e w 1S non-decreasing,
KT
ﬂ:]
- reet b - [Ke! - soind Ther [
o L < l’i‘ ar- ¢ ! -(“k‘() tk\(,. ner . oy
LN

3




~\

R 1 n e rr» "
-1 W ’ [ Ky ¥
| 8 ~
1 \Dr‘ k fk W / V. |
Pw)l = = BT 0w e n- = - =
) I ) \ k,n; \ W !
n=1 ! k,h/
ang¢
ERRR ic fw n/ 3
‘ - w o« K K
, it DL Qk / N ’ / w
- i o, N
aow, =TT Dr\ (0w e TI (1 alveml [ - —- \‘
A - \ K / ! w /
[N n=| \ K,n/ \ Koo
Now from £.9), we obtain
! + v (W) = w) o+ (w'
rP w! W( ) r‘( m
ana n2nce
wolwt - ‘V\\ = ! -V;j - n W\
b ot i ‘rr( rﬂ(

bor oy, omo= 1, .. ., Nand ¥ we €. It follows from £.12} that
TSFr 1yge AF this equaticn s constant witnh respect to n oand tne

mrant side 1s constant with respect to m.  Let

Slw) = n (w) - ¢ .
B(w ln\’v n(W)
T
E/;' =-B(w)
( gB(w) when g(w) > 0
alw) = “
L 0 otherwise
Tnen
12 0 fw) <« ,m} w)
0wl < Doy g ()

from wnich 1t follows that
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-f;‘ T
M -~ X _ (- sy X
L ™ ¢ #
* » * * L*
i + 7 I A TN N S L R R R L f tr Aar, ’1“‘1 + G,“J,/ 1
»> . * L*
TS altren o 5L o Tnevefore . cance 5o GRo
* F* . > /-*
EREL o+ R, = a,0, * 5.G.
| ? 1 4
- COY L ae Al trav e
* * r’
Lt F~C./ = G,a. and F~F7 = Ly
[ — [ [ (e
GEn LR oand £L,26), we obtain
* ,‘7( * *
.o TR LG50 (FEL L GLG
7 RERI I H G~
RS R K 277
> < * * * * * .
. " PG P
= r.,‘] - (G]\‘W + Uﬁ',/)I'TFI + (G]L;/'U\“,;,,
* © * ' r CFL*
S BN B § T U L N U + FoVIF L
1 ') 2 i |
= .
Treretire, <ance 200 fynctions dnvolved are entire, eitner
* * * *
18 - G ] s DR T _ L =
. Ty E ey and, by £.257, 2FE = CZ,JZ
> = * PU 4
~ oL - G }, \?Cﬁ = U]‘\\.
T noias, then tne same argument used in the case N =
e an s Tonciusian Vioof the tneorem foliows. [+ 200 nelas,
* .
Moo= G, ko= G, oand B oo Hoo+ AL
] e I 4
Tner
He




.

14

* * *
FoHL = FLF kot
o o oY
* *> *
roHL = R, HLHL
[— ] I ¢
* *
) -
H‘*:Fr

Cet e Tre aregment geec i the case

h#

Z applize

Tires vooe, =L ata on, respectiveily and (onclusion

v 3nsume trat Joncliucior 1 of the tneorem nglas,

‘- * - J*
Gilu' = GlulGE (ud = Quu)e (UF{u)F {u
_ Lo*
= FiuiF ful
= Flu) ©
woTuston T of the theorem nolds, then
Vi v )
x f
6w o= < T OwIF(w)
T I{,
r‘t +* * \
'::'u)'_z Gluss () = @ (uy(u)F {u)Flu)
r* !
= r (L‘)Flu‘
= Flu

“roof of Corollary 1 to Theorem 8:

f~qg = flu,, = Glu]

£

immeciate,
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N e T oL - ST ¥ o I{. Snice
. Ve
ciw) = & .
ooonsiavio 1YY of Tneorer 2 ohalds, then
R 1 e
SN 16 e Q/“,, .
W o= (54 N Fow ..
The wetoars
16,
gix) = e “fix * ¢, - ¢ )
f =
AT VISR Eels neilas, then
: i
I jo STl X
G Iw! = e Fiwl,
alx) =e'®Fix v ¢+ )
o A f g
AT S G L

“roct of Torcilary OOt Theorem Tp Here, N

roef ar emma 't By Treprem 5

e - HF(W
(m* . -
Pw o= lﬁ et (O)wm = f I ]:1 -
T : LI
n=1"
Therefore
)
e Cow 7 nF(wnl
R B
w2 F e II -2
r | =
‘ w
FI:] n
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Sroof of Jorollary 3 to Tnenrem P: o The equivalence nf Tyoagndg 2
T Tmmediate,
TYo2> v If Fiw) has more than one non-real zerc, then

flrpoang one of them yields a function G{w) sucn that, by Corollary

~ 0
Glul = Flu’ ¥ oue R
Lt ¢ oand g are not equivalent.

= 1. By temma 1, if F.w. nas only one non-real zerc 0°

craer 1, tnen flipping this zero yields a function equivalent to f.

cge f 15, In turn, equivalent to f, the implication follows. G.E.[.

“rouf of Theorem 3: We have

N
Slw) = Y c e B™E )
[ a——"
n=0
N
- -18w,n
= r(w\ZCn( }
n=0
N
e [ ] e o ),
n
n:‘:
et
N
olw) = (e 18" _ b ).
n
n:]
Tner Glw, = F{w)@iw), By Corollary 3 to Theorem &, since f is

unique, ¥ has either no non-real zeroes or one non-real zero of order
1. Therefore, if ¢ has no non-real zeroes, then G has either no non-
real zeroes or one non-real zero of order 1 and, by the same corol-

lary, g is unigue. Tnerefore, it suffices to show that ¢ has no non-

reaql zeroes. Suppose w(wo) = 0. Tnen for some Ny 1« N, < N,

9




=

Al

—1{-\\
t e b
r
\ AR "0(‘71
~168L_ Bn
0] 14
3 € = b
.
o
"
BV
S = b =
- .
0
T el - nooop
ont st o dlary 0 Theoren 3 We have
b t, oo
. (4 "
/ K+1,
= fxo- I
n=1
e 2L Tnegren witn
T r
T —TN""
' - o 1 Id
o= F ,r»:A,...,l"J. :
et vzt Trien Hiw) = Flw iGiv.
£, F nas eitner no non-real zeroe< or one
e I waer b, Since ©opas one non-regl zeroes, Y ohas et
TLomrevegl Jevoet v oone non-real zero of order 1, Tnerefore, 1
@™ oraary, R3S urgque,  CLELD,
Droofoof _emma [ The Tneguelity
d <« o, - 2
R £
o ammediate. [t oremains to show

d >

Ug
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™

Vel <ty - dg. LBl Qo= gutolr Then
U=V
( ~
Q(jv'\ = j Fheltix * v dx = |
G-
foraldmost xRl o s o, Let
uuﬁ:f(;*‘af}, (x):f{:)€~>',
- - A [ S - - ]
T = x g, g = bf af v
X
T dand
3
jcwt):(s -ty ¢t =0
0
£0r .2, S ¢ o, Unager tnese conditions, Titcnmarsh's Theorem VI in
L, P. c8E, states that 3 » and y-@{t) = 0 a.e. in {{, »), M2 = D
coz. 0 A0 LY End A Y o > v, This last inequality implies tnat
tne GoroL o> O {or both.
Sappose x> O, Tner fiy L = (0 a.e., Or (af, 2 * Y. Thnis contra-
SIS e @ssumption trgt tne intervail of support of iy ag, r.]
wootre other hanad, suppose v > 0. Tnen fix) = 0 a.e, 1n
Ly o~y Bgjyoagalr contradicting tne interval of support of ¢,
Progt ot Lemma 3@ 17 vy > d/Z, then by Lemma [
7 = b, -
Zy > @ Jf af
ari<
a, * vy » b, - ¥y
£ f
Tnerefore
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=
. + T ' _ 3 T T -
Yoy 3? y U Jf Y Yelo= ~G“, f,’ =
HRD e or s e e Temna reducec e the o gy
. S
Voo onsume CU.
R LI I T S P T et interval cantare g
(
o Die ama T test 2 loged Interyga) contatnng 74
- gl amz lest clasen interval cantaininn
-y 3t p Dk g2t aneg Ly
\W(\ = -a, q_'
.
L]] = »5, a,
. .
D= l-o, -l
SN a <y a’'l ang £ > d/?2. Furthermore,
Lo Troiix) = O for Xel-B, ~adiy a, £,
- fef -y, gsfine
! fix) for Retég, ap * o
" VIR - <
‘ i
. 0 otrerwise
P
ClxY tor *f_df*ﬁ* £, a, +
noa oo
4 .
0 otherwise




Oy o Or oy,

OV Ve o, By

> firitior of tne interval of support of f, g(5 # 0. Tnerefore

* . . .
= T arc % 0. Since both Hé and G(S are entire functions, it

~b‘|.w' At - = 0 and h6 = 0. Tnerefore,
fix) =0 for a.a. xs:af Yats, At 8.
.o 4 owads arbatrary except for the condition 0 < £ < B - a,
fix =0 for a.a. x:[af *a, 3, * 8

Now redefine 96 anda n for 0 ¢ # < 8 - a, by

¢ f(x) for Xc(bf - 6, by

| 0 otnerwise
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we pause heve to show, for later uyse, that

8.4 C # 0forn=1, ..., N, R
n,ﬁn »
.
tet t ve an integer 1 <t < N, We wish to show that Ct’gt = 0. By
3.40),
1N \atH \ r + + C ' \‘7
e Ty (w? = e, .8 Spw- W) t,e, -2 T Yt
t t
8,1
+ + - W -
Conlw - wy)
B
N n
8 c
+ (w- W) t E : n,r
t (W - w )r
n=1 r=] n
n#t
Ev =.39),

N . N .
R CRETANS ) (REEs
5,43, (w = w,) "H(w) = 2] : n=|
Bn
IT w-wp
N=1
ngt

tquating the rignt sides of Equations 8.42) and £.43) and settinc
W o= W we obtain

t’
N _ Bn
n:]
Ct,B = - N ¢ 0.
t B
H(wt = o)
n=]
n#t
This proves 8.41).
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-.( ) - - A i
Now by 8.39) ang §.40),
N 5n c
(w) = 1 -Z Z n,r
n=1 r=] (W - wn)
et
. ‘ ]
.n,r{W) = p
(w - wn)

Then for real u, T (u) is square-summable, Let '
]

ﬂ,l" r
transform,
Tnen
;7 r-1
£.44) ’n,r(x) =TT [son (v) = san (x)]x ™
wnere v o= U, + ivn.
we have
N Bn
t(w) = ] _Z Cop T (0,
n=1 r=]
G(w) = pPF(w)d (w)
N en
= pFW) =) DG Flw) T, ),
n=1 r=1
ancg
N Bn
.45) 9(x) = pf(x) - p) ) € (F %y )(x)
n=1 r=1
101

be its inverse



et T = Dm N Qk' By assumption T # ¢. Since Prr and Qk are open
mtervals, T is an open interval. For xeT, f(x) = 0 and g(x) = 0.

Tnerefore, from 8,4%),

N Bn
. 8.4 ZZ: Cn,r(f * yn’r)(x) =0 for xeT.
n:] r‘:]
NOw
(f » vn’r)(x) = f(Y)Yn'r(X - y) dy

=

I

r 7
?TFl:_Tjj ZC}(Y)£59"(Vn) + san{x - y)]

iw {x-y)
r-1 n
(x - y) e dy.
First assume v, > C. Then

X .

r W x —iw_y

) n r-1 n

(f = Yn,r)(x) o 7€ .//f(y)(x - v) e ay
i oxeT, tnen

X

r WX -iw_y
i n r-1 n
= oI e f_](Y)(X - y) € dy
; W x r- !
e , r- (1x)S
reme s L
s=0
7 y =Wy
/f-1(y>(-iy>“"‘s' " dy}
; W x r-1 . 15 F(r-]_sn LS
G e K ‘] (v«n (ix)
=0
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Thus
1w x r-1
; -1-5 .
(% vy () = ZT—-1-S |S|Ff']' ) (w n)(1x)s
3.47)
for v, > 0 ana xeT,
A yvinilar calculation yields
WX r-)
, . ] {r-1- )
(f * v, x)=-ie " ZE: F-s -1l Fjr S)(wn)(1x)s
3,481 s=0
for v, < 0 and xeT.
Now Jet
A= {n: 1<_n<_Nanan>0}
ana
B= ‘nt lc<ncNandv <0}
From §.46), R.47, .43), we obtain, for xeT,
N 8n
0D )t (e 00
n=] r=]
B
fv X S p(r-1-s) s
= 1.‘4_‘ € 2{: Cn,r (r —T s)'sl _] (wn)(1x)
_neh r=1 S=
iw_x n ol
n N 1 {r-1-s) .\ S
) e PAPRT YAV e w3 i3 I (wp) ()
neB r=1 s=0
iw_x Bn-7 3 Bn o
j n,r {r-1-s) 13
Si{) e ;[Z AL TR P
neA 5=0 r=s+l
g -1 e
n n
j;ﬂ WX if Cn,r g(r-1 s)(W )| xS
VA s r - S ] nf 1%
neB s=0 r=s+1
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For neA, let

n

.S C

i n,r {r-1-s)
£.49 = ) .
£.49) On,s ST r - 1 -s)! F*1 (“n)

r=S+]
and for neB, let
Bn .
i® n,r (r-1-s)

£.50; dn,s-“HZ(r- R F] (Vn)

r=s+1
Let

N . Bn']
1wnx S
al{x) =:Z: e dn,sx
n=1 s=0
Then, since a is analytic and a(x) = 0 ¥ xeT,
2.51) a(x) =0 ¥ xe R.
Zlaim
dn,s =0 for 0 <s < By - 1 andn =1, , N.
Proof of claim: Choose an integer t, 1 <t <N, = Vi < Vg
- ! i = i ! -
n=1, .. ., N, ana if Vo = Vo then By < By- Since alx) =
0 ¥ xe R,
R —iw, x
| o=11m—‘_/a(x)e LN
Bt %
R+ R

i

—
—_
3
l_,
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Bt~1
. 1 ] s+1
= ;l: -E; ZE: s+ 1 dt,sR
R s=0
g8 -1
N 1 R T(w_~w, )x
L D | L
a Tim | ~— x" e ax
Z nsS p B¢ X
n=1 S:O R
ngt
g -1
) S 1 R s 1("n-wt)x
— d Tim | ~—— J[ x> e ax |,
£y t,et—l NS pow et 0
n=1 s=0 R
ngt
Thus,
N Bn i _7
1
o g
£.52) dt,e = BtZZ dn,s 1im Z on,S(R)
1 R e t
n=1 s=0 R
n#t
where
R T{w_-w,)x
¢ (R} = /xse O
l],S O r—~
i(u —ut)R (vt-vn)R RS
= ¢ € w -~ w
t
S
S
+Z(_])r s ! rTTps-r _ (-1) .
- 174 - s - )|
— (s - r)Lilw, - w,)] Tilwy - W)
If Ve <V, then it is clear that
lim — 5 (R) =0
Row Br S

If Vp = V4, then B, < 8




1
[Val

LRy e~ R°_ E : L
AT < 8y W o Wy (6 - r) W - w r+i
R F r<1 7 1 7n t
1
+ 1 ; J
VT Y e

“nevefore 8,83, nolds ¥ n g t. It tnen follows from £.57) thnat

- 1. Now repeat the above argument (starting from "Proof of

tue,-1 7
Slaimtl owaitn Bt
we eventually obtain

repiaced by By - 1. By continuing this proceaure,

AL = C - = . ‘e
. Grs = GCfor 0 csce - Taan=1,. s N

“nrn completes procof of claim,

0w SuppOS€ nekh., Then by 8.49) and 8.54),

:r‘ -
Yo POy s o for 0 e s - T
by T =S '
r=9+1

_wt oz met1x O be cefined by

I

V’E{.

1 (
r“-p_ n’en O
:n Fo-7 Cr g -1 ] C
L (e * 71 n,g
n

o . ) 1 C

-
len)

n,l
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We also define the vertical vector

‘ -1 n
V- ! Ffﬁ)(wn)
|
|
. l
(8,-1)
F (w )
-1 n N

Then the system of eguations 8.55) may be written as
8.56) CsV = Q.

We wish to conclude that V = 0. It suffices to show that

§8.57) det(C) # 0.
We have

Bn"] 1 By

det(C) = Z T (Cn,ﬁ '
n

s=0

By §.41), Cn g = 0 and therefore 8.57) holds and V = 0, That is,
*“n
8.5¢) e(S)w )20 fors=0 g -1
.58 LA =0, .. ., 8

and ncA,

Furthermore, Since B, 5_nF(wn),

F(S)(wn) -0 fors=0, ... 8 -1

and neA.

Since F(S)(wn) = F(S)(w ) o+ F%S)(wn), we obtain
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Banul F%S)(Wn) =0 for s = O, S

and nehA.

From §.58) and 8.59), we conclude that for nch, tne v, are zeroes Jf

20t .:_] and F] of orders _>_Sn.

f neB, a similar argument yields tne same result. Tnerefore

31l the has = 1, . . ., N, are zeroes of poth F_] and F1 of orderc
—>—E!‘|
we have
-6
1- %
N .
W
G(w) = F(w)l I w
1 - =
n:] W
"]

Define

Trer G _(u), uve R, is square-summable. Let g be the inverse

transform of Gr’ r = -1, 1. We have

F = F_] + F].
Therefore,

G = G_] + G]
and

9=937*%9-
Naow
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ang
By Theorem 7,

Therefore,
Qk = Pm'

Also, by {if necessary) adjusting the values of 93 and a, on sets
of measure zero,

‘[ g(x) for g < X Sy

l\O otherwise

and
g(x) for tm <X < bf
gy (x) =
1.0 otherwise C.E.D.

Proof of Theorem 11: Let R(F) = {w: Imw > 0 and either weW or
wew:r = ! Weiono= Y, . . ., N 3. Let

A= D(F)NR(F) = (zr n=1, , ©} with {2 | < znﬂl,

n=1, , ®

In tne factorization for F given in Theorem 5, a finite number of the
factors in the infinite product may be reordered without affecting
the value of the product. Therefore we have
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and let g be its inverse transform. Then
T
P (W) = L(ﬂﬂ G(w)
Fro2(0)
and
N )
f(x) = ETFTLQl g(x) a.e.
F (0)
Therefore S(g) = S(f) and
M
S{9)" = S(f)' = (==, -b ) U| U (-P
m=1
Since Och , Oe - Pm and
0 0
P N(-P )3
Mo Mo
Therefore, by Theorem 10,
Pm = -Pm
o) 0
g(x) for x < 0
g_](x) =
0 otherwise
and
g{x) for x >0
91()() =
0 otherwise
Then
f (x) = i (0) (x) a.e
ST T Y gy S eee
1




) Y
F_](v.) = Fj?y(—g—y G](V")-
(0)
v Tneoren 10, sacn ZeW(F) s a zerc of Fy of oroer > oclz; ang
GF(Z,‘r
e
- z
L‘I(V‘) = F‘l(v') H L] W |
ZEW(F) B E—]
Treretore
’3;_‘(2)
. 1 - X
* "rr (Cl S
oy = ey TT |2 LB
T £y .
2eW(F) 2
o f ot Theorer 12: o Let R(F), A, G ana g be definea as in tne proc
< Thoeren | Then
(z]
{“ w
Giw) = - 51 .
eW(F) L] .
. Ay
Foiw) = F_(0) Glw)
STy

and

[¥a)

fix) = = glx) a.e
" (0)
M
i 71V BN VAR CLIRE EURR SR PR
M=}
12




Since . N (-P

i T e = -
m 0 ) # ¢, it follows by Theorem 10 that P = p

? 1 m,
Therefore, f and a are both zero a.e. on (-tm » ~Sp )y (sm . tm ).
2 2 2 2
Let

{ g(x) for x < -tm?

9_]()‘) = 1
0 otherwise

g(x) for x > - sm2

ana

o
~n
—
b3
~—
]

0 otherwise

Fix) = f_q(x) * £,(x).

By Theorem 10, each zeW(F) is a zero of F_] and F2 of orders Z.°F(Z)'

UF(Z)

7. ¥

6_q(w) = F_y(w) H : vzv

ZeW(F) Tz
op(z)

1. ¥

GZ(W) = Fz(w) H : 5/

2eW(F) Tz

Now let
g(x) for —Sm2 < X <_Sm2
9,(x) =

0 otherwise

13




dhs

0 otherwise

ner a,ix) = go(z) + g](x). Again bv Theorem 10, each zeW(F) 15 a

2ory of ;c an F] of orders 3-CF(Z)’

GF(Z)
1_ ¥
€.00) oo = Fotw [T |
ZeW(F) Tz
ana
op(2)
1 - ¥
LAY Gylw) = Fylw) H :
2eW(F) 3 z
Since
F(x) =F—;%ﬂ—)lo(x) a.e.,
FUor(o)
it tollows that
Yoy
f o (x) = F (0) g.(x) a.e
-1 F{ri(o) 1
and
: F(M 1)
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Therefore

v i)
8.62) F_yw) = o) Gy (w)
and
3.63) F;(w) = F—(:T_—(—T(—Ol G,y (w).
F (o)
Puting 8.60), 8.61), 8.62), and 8.63) together, we obtain
op(2)
10 = Syl o) Il |
ZeW(F) z
and
or(2)
P ITI. [ i %]
° FT77?6; ° zeW(F) - ;
115
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APPENDIX C

COMMENTS ON CLAIMS CONCERNING THE UNIQUENESS
OF SOLUTIONS TO THE PHASE RETRIEVAL PROBLEM

T.R. Crimmins and J.R. Fienup

Radar and Optics Division
Environmental Research Institute of Michigan
P.0. Box 8618
Ann Arbor, Michigan 48107

Abstract
Questions are raised concerning some claims by A.H. Greenaway
and R.H.T. Bates concerning the uniqueness of solutions to the

phase retrieval problem for functions with disconnected support.
A counterexample is presented.
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INTRODUCTION

In this letter, questions are raised concerning some claims by
sreenaway [1] and Bates [2]. These papers are concerned with the question

of uniqueness of solutions to the phase retrieval problem. This problem,
in the one-dimensional case, can be stated as follows.

Let f be a complex-valued function on the real line which vanishes
outside of some finite interval. Let F be its Fourier transform. Given
tne modulus of F on the real line, i.e., |F(u){ for all real u, the prob-
lem is to reconstruct the original function, f, from this information.
The general uniqueness question is: flow many other sunctions, g#f, 2xist
LLCSi vandsil cutsdde of some qindlte nterval and whose Fuwwler trans goams
sates sy 1G(u) = F(u)i 4on all neal u?

2. GREENAWAY'S PAPER [1]

Greenaway considers a situation in which the unknown function, f,
i3 known to be zera outside of the union of two disjoint intervals (a,c)
and {d,b). In other words

f=g+h.

where g is zero outside of {a,c) and h is zero outside of (d,b) (see

Figure 1).

Now let F, G and H be the Fourier transforms of f, g and h, re-
specively, extended by analyticity into the complex plane:
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where w = u+iv and u and v are real. The modulus of F on the real line,

i.e., F(u)i, is given.

The question is: Tu what extent do the conditicns described above

deteumane the quncteen €7

The functions

e'%F(x+8) and e *F(-x+8),

where the overbar denotes complex conjugation and o and 3 are real,
have the same Fourier modulus on the real line as does f. If any of
these functions are also zero outside of the union of the intervals
"a,c} and {d,b), then they satisfy all the requirements and qualify as
alternate solutions. These solutions will be said to be associated
~#ith the solution f.

Now the revised question is: Are there any othexr solutions not
assccuated wetn 7
Let W be a non-real zero of F, and let
Wew_

0

W-w
0o

Tne function F, can oe viewed as being gotten from F by first remov-
ing a zero at W, and then adding a zero at W;. In other words, the
zero at “ has peen 'flipped" about the real line. Now for real w,w=u,

‘u—W;E
i

{u-wO
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and tnerefore
F1(u)‘ = F(u)' for all real u.

Hofstetter [3] and Walther (4] proved *nat if “ is any function which
/anisnes gutside of some fini<e 1n*eryal ang F]{u) = F(u)  for all real
4, “nen F,J is gotten from F 2y f12551n7 -ariogus sets of non-real zeroes
37 % and multiplying by a constant of modulus 1 and by an exponential
function. In particular, if Fy 15 obtained from F by flipping the set

3f 311 its non-real zeroes, *then i*s inverse transform, f1, satisfies
f](x) = f(-x)a

and <nys, 1f fT vanisnes outside the union of {a.c} and {(d,b), then
£, 15 a solution associated with f. (Here, if a zero of F has multi-

s3ltcity n, 1t must be flipped n times.)
“ow let Z{F) denote the set of all non-real zerves of F.

Greenaway claims that if F1 is obtained from F by flipping any
~=oven o subset, S, of Z(F) (i.e., S#Z(F)) and if f] vanishes outside of
=ne union of {a,c) and {d,b), then all the points in S are zeroes of
30th 5 and H.

Thus, if G and 4 have no zeroes in common (which would usally be
~ne case if g and h are gotten more or less randomly from the real
~orid), then it would follow that the only solutions are f and its

i3s30ciated solutions.

Greenaway's claim is true in the special case in which F has only

1 finite number of non-real zeroes. (Actually, Greenaway's proof holds

126




—w

-4-

only for the more restricted case in which F has a finite number of non-
real zeroes of order 1. However, the case of higher order zeroes can be
taken care of by an extension of his arqument. See [5].)

The following counterexample shows that Greenaway's claim is not
true in general. In this counterexample, the set Z(F) is infinite and
$ is an infinite proper subset of Z{F).

Counterexample:

Let
1-ix] for xi <]
0 for x| > 1

See Figure 2. Then the Fourier transform, %, of ; is given by

Note that . has no non-real zeroes.

Now let

and
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Then 3=8: has no non-real zeroes and hence G and H have no non-real
Zerges in common. Let

flx) = g{x; + h(x)

aind iet

lee Figure 3. Thema ¢ - d- b, the intervals (a,c) and {d,b) are
disjoint, and f is zero outside the union of (a,c) and (d,b). The

Sfourier transform of f is

Flw) = <8+2e'41W 3e-81w 2e‘121w) w)
| diw ( -8iw “diw ) \
= 2<e + 2 e Se + 2/ v(w) (1)

How ‘et

and
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Then G1=4® has no non-real zeroes and hence 61 and H] have no non-real

zeroes in common. Let

filx) = gq(x) + hy (x)

]

4p{x) + To(x-4) + 4p(x-12).

See Figure 3. Then FI is also zero outside of the union of (a,c) and
{d,b). The Fourier transform of f, is

Fy(w) (4 + 7074w 4e"2‘w) 5(w)
- 2(243“”w . 1) (e'giw - sediW 2) 5(w)

L g div <e4iw . 2> (e-Siw _ sebiw 2> o () (2)

It follows from (1) and (2) that
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Now, for real w,w=u,

e-4iu e41u+2 -
e-41u+2 |

Therefore
(Fy{u)i=;F(u)! for all real u.
Thus f and f] are both solutions and it is clear that they are not

associated.

In order to see which zeroes must be flipped to get F] from F, let

e"”W + 2

T1(wW)

and
~p(w) = e 8T L e 4 o,
Then
F(w) = 28y (W) T,(w)a(w) (3)
and
Folw) = 27 TG 1y(w)s(w) (4)
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. -4iw | .
Since 2 has no non-real zeroes and e is never zerpo, it follows from

(3) and (4) that

and

~
—
-n
—_—
~—
n
~
—
1
—_—
~—
~
—
3
~n
~

where

~
—~
—
—_—
~—
n

{W} weZ(F1)} .

Thus the zeroes of F which are in S=Z(T1) are flipped. The sets Z(T])
and Z(Tz) are given by

2:) ={ 2+ 20+ Liog2: n=0,+1,+2,...
and

1 -1 o~ . .
= {i-E tan” Y31 + 50+ i 5 log 2: n=0,il,t2,...}.

See Fijure 4. The flipping of the zeroes in S is followed by multipli-
cation by the exponential e'41w. The latter simply has the effect of

translating f] into the proper position.
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in the above example the function ; could be replaced by any func-
“i1on wnicn is 2ero outside of the interval (-1,1) and whose Fourier trans-
*orn nas no non-real zeroes. For example, ; could be replaced by

)= (Ge) (2¢),

~nere * denotes convolution, or by

L 0 for x >1

3. BATE'S PAPER [2

Bates considers the situation in which

f(x) =

N
fa(x)
=]

n

wnere each fn is zero outside of an interval In and the intervals
In,n=1...N are pairwise disjoint. He claims that if the Fourier trans-
forms Fn, have no non-real zeros common to all of them, then f and its
asscciated solutions are the only functions with compact support and
~hose Fourier transforms have the same moduli as that of the Fourier
transform of f. Thus Bates claims even more than Greenaway does.
Therefore, the above example is also a counterexample to Bates' claim.
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A stronger separation condition on the In which does work can be
found in [5].
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Figure 1:

Fijure 3:

Figure 4.

Figure Captians

Member of the class of functions with disconnected
support. Note: Although the functions g and h are
represented here as positive real functions, they
can be complex-valued.

Functions f(x) (above) and f](x) {below) have the
same Fourier modulus.

Above: non-real zergres of F. Below: non-real
zerpoes of F]' The circled zerpes are flipped.
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APPENDIX D

WHE. Determining the Support of an Object from the Support
of Its Autocorrelation.® J K FIENUP AND T R CRIMMINS. Radar
and Optics Dhesion, Encironmental Research Institute of Michigan,
PO Box sols. Ann Arbor, Michigan 48107, - In astronomy, x-ray
crvstallography, and other disciphines, one often wishes to reconstruct
at ohyect distribution from its autocorrelation or, equivalently, from
the modulus of its Fourier transform (i.e., the phase retrieval prob-
lemi Tt also useful to be able to reconstruct just the support of the
object e the region on which it s nonzerv). Insome cases. for ex-
ample. to hind the relative locations of a number of pointlike stars, the
object’s support s the desired information.  In addition, once the
object’s suppart 1s known, the reconstruction of the object distribution
by th-iterative method! is simplified.  We show several methods of
finding sets which contain the support of an object, based on the
support of its autocorrelation.  The smaller these sets are, the more
information they give about the support of the object. Particularly
small sets containing the vbject’s support are given by intersectians
of its autucorrelation’s support with translates of its autocorrelation’s
support. [t will be shown that for special cases this gives rise to a
unique reconstruction of the support of the object from the support
of its autocorrelation. (13 min.)

* Work support by AFOSK
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